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Abstract

Hyperspectral imaging (HSI) is an emerging analytical tool with flexible
applications in many different target detection and classification environments, including
Combat Search and Rescue, Military Intelligence, environmental conservation, and many
more. Algorithms are being developed at a rapid rate, solving various related
classification and detection problems under certain assumptions. At the core of these
algorithms is the concept of supervised pattern classification, which trains an algorithm to
data with enough generalizability that it can be applied to multiple instances of data. It is
necessary to develop a logical methodology that can weigh attributes and responses and
provide the analyst an output value that can help determine which algorithm should be
used in a specific situation. This research focuses on the comparison of the overall quality
of supervised learning classification algorithms (including Naive Bayes, Classification
Trees, and Quadratic Discriminant) through the development, use, and analysis of a value
focused thinking (VFT) hierarchy. This hierarchy represents a fusion of qualitative and
guantitative parameter values developed with the use of elicited Subject Matter Expert a
priori information. Parameters include a fusion of bias/variance values decomposed from
both quadratic and zero/one loss functions, as well as a comparison of cross-validation
methodologies and resulting generalization error. This methodology is then utilized to
compare the aforementioned classifiers as applied to hyperspectral imaging data. The
conclusions reached include a proof of concept of the credibility and applicability of the

value focused thinking process to decisions for use of algorithm for different objectives.
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VALUE FOCUSED THINKING APPLICATION TO SUPERVISED PATTERN
CLASSIFICATION WITH EXTENSIONS TO HYPERSPECTRAL ANOMALY
DETECTION ALGORITHMS

l. Introduction

Background
The No Free Lunch Theorem states that a comparison of classifiers for a classification
task is largely dependent on the task at hand. Wolpert and Macready formalized this as
All algorithms that search for an extremum of a cost function perform exactly the same,
when averaged over all possible cost functions. In particular, if algorithm A outperforms
algorithm B on some cost functions, then loosely speaking there must exist exactly as
many other functions where B outperforms A (Wolpert and Macready, 1995).
A classifier that works in one case may outperform another classifier, but the other may
outperform it in another case. Therefore, there are many factors and responses that go into
determining which classifier is best in certain situations. Even if an optimal classifier did exist, it
would be almost impossible to prove such a fact, as it would necessitate a vast amount of real-
world data with many different characteristics to prove its optimality. Dimitris Manolakis states
in his paper Is There a Best Hyperspectral Detection Algorithm?,
Our main conclusion is that if we take into account important aspects of real-world
hyperspectral imaging problems, proper use of simple detectors, like the matched filter
and adaptive-cosine estimators, may provide acceptable performance for practically
relevant applications. Are we certain that an undiscovered optimal detector does not
exist? Probably not. However, even if such a detector were found, we may never have
sufficient data to prove its superiority (Manolakis et al., 2009).
This task always necessitates an expert analyst stay in the loop to make any tactical decisions
depending on the type of classification task that arises in the particular situation.
For this reason, in the Air Force, when analysts are observing remote sensing data in

order to provide a decision maker the information that they need to make important real time

decisions, they must fully understand the information that is given to them and must also have a
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way to weigh different methodologies that infer information out of the data that they have.
Specifically, when assessing hyperspectral imaging data collected from remote sensors aimed at
an operational scene in order to detect targets of interest, the analyst must understand which tool
will give them the best results amongst a plethora of different objectives and criteria. This
situation naturally leads to the idea and use of Value Focused Thinking (VFT) or Multi-
Objective Decision Analysis (MODA\) to assess the quality of these different anomaly detectors
in different situations.

Hyperspectral imaging (HSI) analysis is a discipline that allows analysts to collect data
about the environment that is of their interest in a unique way that takes advantage of all of the
information that is contained in the Infrared and Visible portions of the Electromagnetic
Spectrum. Every material that exists in this universe is comprised of a unique spectral fingerprint
that can be extracted if one knows how to look for it. Much like in the discipline of statistics in
general, where data is collected in a certain methodological way and then analyzed and tested in
order to discover an inference about this data that describes the truth of some underlying
population, HSI allows the collection Electromagnetic (EM) information along the spectral
dimension (partitioned by wavelength) for the inference of the type of material in each of a
certain amount of pixels in the spatial dimension of a sensor based on that sensor’s resolution.
This naturally leads to the use of pattern classification algorithms to detect the classes of these
materials based on their spectral decomposition, using the EM information that is treated as the
features, or predictors of these classes. If an initial data collection experiment is conducted, and a
truth set of information is formed for that specific image, the classification algorithm that is
being used can be trained in order to optimize the discriminant of the features that can separate

the targets, or anomalies, from the background data.



There are many issues prevalent when attempting to measure the performance of
classification algorithms and many competing responses that can be used in order to train the
algorithm to detect the certain targets of interest. The quality of any type of methodology is a
difficult concept to define. Robert Pirsig states in his book, Zen and the Art of Motorcycle
Maintenance,

"What's new?’ is an interesting and broadening eternal question, but one which, if

pursued exclusively, results only in an endless parade of trivia and fashion, the silt of

tomorrow. | would like, instead, to be concerned with the question “‘What is best?,” a

question which cuts deeply rather than broadly, a question whose answers tend to move

the silt downstream (Pirsig, 1974).

To know the methodology that is truly best helps improve knowledge and thus allows the
creation of new methodologies in an improved direction that will provide the most utility.

One issue belonging to the question of “what is best?” is the contextual information that
is present within the scene that is being sensed. What types of targets are of interest? To what
degree do they blend in with the surrounding background pixels? Are there different targets that
are of interest that can be detected and separated from the background that need to be assessed
and weighted per their importance and criticality? How alike is the current image that is being
analyzed and the other images that will be analyzed in the future, and can our classification
algorithm be trained robustly enough to account for these differences and still provide the analyst
the information that is needed to make the right inferences? How difficult are the algorithms to
create, manipulate, use and maintain and can the average analyst use them in every situation or
does there need to be a Subject Matter Expert (SME) in the loop to help conduct these tasks?

How long does it take the algorithm to make a correct classification and does this length of time

match up appropriately to the operational situation that it is being used in? It is clear that there is



a lot of information to think about and a lot of questions to be asked in order to make the right
decision to which algorithm is most beneficial.

Value Focused Thinking (VFT) is used in order to analyze a space of many competing
objectives, which is the situation that occurs in HSI Anomaly Detection, and it weighs each
competing objective appropriately based on the sets of measurements and values that are
inherent to those objectives. This allows the influx of prior information from decision makers
(DMs) and subject matter experts (SMESs) that can update our state of information for the
particular situation’s requirements. Without this addition of SME input, the comparisons that are
made will be based on frequentist assumptions of probability and likelihood, which assumes that
only the data collected in the experiment, along with the assumptions of asymptotic normality,
can be used to make a decision for which of the alternatives are better in that case. This can be
flawed as in some cases, some of these measures will be valued higher than in other cases, and
the overall decision that would be made based on expected values will not apply to every single
case as a whole. Using a hierarchical Value Focused Thinking approach allows us to focus on the
values that are important to us in that specific situation so we can collect useful actionable
information that can be used to form and assist important decisions in a wartime environment.
This research effort is a development of a VFT framework in the context of an HSI anomaly

detection data collection and decision making effort using different classifiers as our alternatives.

Methodology

There is an inherent lack of formalism in the literature for deciding upon which algorithm
is most useful for classification in which situation. Due to this vacuum of knowledge, a study can
be conducted on a small scale of situations that can lend information about which of a set of

algorithms should be used in that situation, along with the opinions of the Decision Maker. This



is akin to the situation of when a certain weapon must be used in theater to deter a particular
threat. Not every weapon is equal in every situation, and a de facto analysis must be conducted in
order to assess the validity of that weapon in that situation. Viewing HSI data classification as
one of those weapons, this analytical effort will attempt to set up an organized hierarchical
comparison using multiple responses, values, and measurements of interest that are formulated
under the supervision of a typical Subject Matter Expert/Decision Maker in order to make ad hoc
decisions of which classifier to use in which situation. This will allow the analyst at least a
blueprint of a methodology that can be manipulated in order to organize all of these responses in
a logical manner instead of just performing guesswork.

In summary, the approach that will be undertaken in this research effort will be
comprised of a sequence of experiments utilizing various pattern classification techniques for
two-dimensional and multi-dimensional HSI anomaly detection and analysis. The process is
illustrated in the following list of steps.

Step 1:

Decide upon and list responses or objective measurements that define the “quality” of the
HSI Anomaly Detection Algorithm. These responses are broken into three areas; the first area
considers the computational effort required to use the algorithm, which can be thought of as the
user’s satisfaction or dissatisfaction. The second area is an analysis of the confusion matrix,
which represents how well the classifier is labeling data points as targets or backgrounds after it
has been sufficiently trained. The third area is an analysis of the training and validation
performance of the algorithm, in terms of how it performs when subjected to various training and

testing data sets.



Step 2:

Values for responses will be entered into a VFT hierarchy which is internally weighed
and assessed using the input from the SMEs and DMs. This VFT analysis will provide a single
value for the quality of the algorithm in light of the fusion of both statistically and subjectively
garnered information across all performance measurements.

Step 3:

The single value computed and recorded from the VFT Hierarchy will be compared with
the results of each individual performance measurement. This will be an empirical verification of
the differences in the recommendations of the hierarchy over the individual measurements. This
could provide both additional inferences about the algorithms as well as an assessment of the
different methodologies of performing algorithm analysis and comparison.

Step 4:

Post-processing will be done by first analyzing the hierarchy values per significant factor
levels. Additional processing can be done by weighting the hierarchical values by the percentage

of pixels in the image to simulate the weighing of the classifiers by operational scenario.

For the first step, two multivariate normal distributions will be randomly generated
representing a background class and a target class. Different supervised learning classification
algorithms will be utilized to assess the effects of various factors on the classification behavior
and performance, and in turn, this will allow us a transparent view at how the VFT hierarchy is
performing. All reasonable permutations of factors will be used to develop a multitude of unique
combinations. These combinations are considered different unique images for this first

experimental stage. The factors that are in play include the type of classification algorithm, the



Mahalanobis distance between the centroids of the two distributions, the covariance matrices of
distributions, and the percentage of target pixels to overall pixels. The following is the table of

factors and their levels.
Table 1. - Classification Algorithms

Alternative Classification
Algorithms

Quadratic Discriminant Analysis
Naive Bayes Classification
Classification Trees

Table 2. - Data Experiment Factors

Target Background
Mahalanobis g kg- FPercentage of
i Cowvariance Covariance )
Distance i i Target Pixels
Matrix Matrix
Long =10 TCML BCM1 1%
Short <10 TCM2 BCM2 5%
TCM3 BCM3 10%

Each individual factor is a representation of what is most likely to occur in a basic imaging
anomaly detection problem. After each VFT Hierarchy value is collected, a post-processing
adjustment for this value will be computed by weighing the number of target pixels in the image.
This will allow the weighing mechanism to account for changes in the quality of the algorithm
due to the unique scenario that it is being used for. In actuality, there is a large difference in
using an algorithm in passive, non-time sensitive situations, such as analyzing crop distributions
in a field, and those of more active and urgent situations, such as those found in Search and
Rescue and Military settings.

The responses that will be generated and input into a VFT hierarchy include a

measurement for computational complexity in terms of the difficulty to perform this basic task,
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and the computational time that it takes to perform the task. The second response will be a
selection of the False Positive Fraction (FPF) and True Positive Fraction (TPF) that would
typically be seen in a Response Operator Characteristic curve (ROC), these same values but in
terms of a Specificity and Sensitivity framework, or these values under an Error and Accuracy
framework. This allows the analyst to choose a framework to work under in order to reduce any
ambiguity in the decision chain from analyst to Decision Maker. In this research, the TPF and
FPF values will be used. The third component will be comprised of error under the framework of
Cross Validation weighed against the framework of Resubstitution Error, as well as the
Decomposition of the Mean Squared Error (MSE) function for classification utilizing
bootstrapping to weigh the Bias of the algorithm when calculating TPF and FPF to the Variance
of the algorithm when computing these same values.

The second experiment will use these same classification algorithms but with HSI data
generated from a data collection effort using the simulated Airborne Reflective Emissive
Spectrometer (ARES) Forest Radiance | and Desert Radiance Il data collection experiment
images developed from the Hyperspectral MASINT Support to Military Operations (HYMSMO)
program using the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor. Six
of the HYDICE ARES images in the AFIT Sensor Fusion Library will be used to assess these
classification algorithms. The same responses will be calculated as in the first experimental effort
and these responses will be input into the same VFT hierarchy. Similar analysis will be
conducted using this Hierarchy, with focus being placed on how the VFT changes when the

algorithms are used for a more complex dataset.



Preview

Chapter 2 serves as a survey of the background information that is needed to fully
understand the context and content of this research effort. It will delineate the current knowledge
that it contained in the literature of HSI Anomaly Detection algorithms as well as the concept
and application of VValue Focused Thinking. This chapter also describes the responses that are of
interest and the various classification schemes that are analyzed within this research effort.
Chapter 3 gives insight into the approach of the analysis within the framework of HSI Anomaly
Detection, Value Focused Thinking, and Experimental Design. It will illustrate the sequential
nature of the effort that is performed and the comparisons that will be made. The chapter will
also outline the Value Focused Thinking process and the steps involved to develop the hierarchy,
develop the value functions, and assess the measurements. Chapter 4 contains the results of the
analysis that is undertaken to compare the classification algorithms. Any additional insights that
come to light from these comparisons are contained within this chapter. Chapter 5 details the
conclusions and inferences that have come about from this research as well as a listing of
contributions to the field of HSI Anomaly Detection and any suggestions for additional research

as follow on studies that can be conducted using the results of this analysis.



Il. Literature Review

Overview

The realm of hyperspectral imaging is a burgeoning field that has exploded over the last
twenty years. The reason for its growth is its universal application in many fields, including
medicine, law enforcement, military, homeland security, and developing Graphic User Interfaces
such as Google Earth (Dube, 2009). Many attempts have been made to improve the performance
of algorithms under the considerations of various assumptions, including non-linearity, non-
independence, and non-normality of the background and target spectrum distributions. Borghys,
et al. states “HSI anomaly detectors differ in the way the background is characterized and in the
method used for determining the difference between the current pixel and the background”
(Borghys et al., 2007). The constraints and difficulties found within this application cause the
procession and evolution of algorithms to continue at a rapid pace. Many thesis research efforts
have been focused on improving different algorithms and implementing algorithms in order to
show incremental improvement. Some of these algorithms include classical, finite-target, and
mixture-tuned matched filters; Reed-Xiaoli (RX) anomaly detector; orthogonal-subspace,
adaptive-cosine estimator; and subspace, kernel-matched subspace, and joint subspace detectors.
Along with these algorithms, there have been various methods developed for data treatment tasks
such as feature extraction and selection for dimensionality reduction, background-clutter
modeling, end-member selection, and radiance-versus-reflectance domain processing (Manolakis
et al., 2009). Table 3 highlights a selection of references that are found within the HSI domain

for common types of algorithms and types of data treatment tasks.
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Table 3. - Hyperspectral Research Resources

Types of
Algorithm

References

Types of Data
Treatment Tasks

References

Classical Matched
Filters

(DiPetro et al., 2012}
(Masrabadi, 2014)
(Shi et al., 2010)

Feature Extraction

(Liao et al., 2013}
(Lunga et al., 2014)
(Kang et al., 2014)

Finite-Target
Matched Filter

(Manolakis et al., 2002)
(Schaum et al., 2004)
(Stocker et al., 1997)

Feature Selection

(Li et al., 2011)
(Serpico et al., 2001}
(Yu et al., 2002}

Mixture Tuned

(Mundt et al., 2005}
(Lentilucci et al., 2005)

Background-Clutter

(Stein et al., 2002)
(Kasen et al., 2004)

Matched Filter Modeling
(Thompson et al., 2013) (Burr et al., 2006)
Banerjee et al., 2006 Winter, 2009
Reed-Xiaoli ( J ) End-Member ( )
(Borghys et al., 2011} . (Du et al., 2008)
Anomaly Detector - Selection
(Williams et al., 2013) (Plaza et al., 2004}
Orthogonal- (Chang et al., 2011) Radiance-versus- (Shaw et al., 2002)
Subspace (Acito et al., 2010) Reflectance Domain | (Staenz et al., 1998)
Estimator (Bioucas-Dias et al., 2012) Processing (Lentilucci et al., 2009)

Adaptive-Cosine

(Manolakis et al., 2013)
(Frontera-Pons et al., 2012}

Estimator B
(Pieper et al., 2011}
(Guo et al., 2011)
Subspace
(Zhang et al., 2010)
Detector

(Gholizadeh et al., 2012)

Kernel-Matched
Subspace
Detector

(Chen et al., 2011}
(Wang et al., 2013)
(Gu et al., 2011}

Joint Subspace
Detector

(Eismann et al., 2009)
(Zhang et al., 2010}
(Borghys et al., 2012)

Due to the rapid expansion of knowledge in this field, it is a necessary to create a

methodological framework to balance the values that are utilized when comparing these
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algorithms. Each individual algorithm must be compared to other algorithms under the same
assumptions, as it is a difficult task to enumerate each assumption and compare each algorithm
across different levels of reality and mathematical rigor. As Dimitris Manolakis (Manolakis,
2009) states, “It is both time consuming and difficult for designers of hyperspectral imaging
systems to navigate through the existing literature to choose a detector or decide if a certain level
of performance can be expected” (Manolakis et al., 2009). The following few pages represent an
elicitation of knowledge for various subjects across the algorithmic and response variable
domains in order to create a representation of topics that are relevant to creating a logical
framework for comparison. These include overviews of the HSI domain, VValue Focused
Thinking, Supervised Learning algorithms, the Bias-Variance tradeoff, and the Confusion

Matrix.

Hyperspectral Data Analysis Algorithms

Figure 1 outlines the basic tasks that are found in HSI image analysis. There are three
main classes of algorithms that have been developed, each for different aims of utilizing the
information that is collected from the HSI imaging sensor. The first, Target Detection, is what
this research effort is concerned with. Target detection is the classification of pixels within an
image as either target or background pixels. Target detection algorithms can be characterized in
two separate groups, including Spectral Anomaly Detection Algorithms and Spectral Matching
Detection Algorithms. Anomaly Detection Algorithms do not need the a priori spectral
signatures of the target pixels to work. When comparing the pixel with either the local or global
background, any pixel that does not have the same spectral composition is declared a target.
While this is a desirable property, it is limited by the fact that it cannot separate anomalies that

are man-made, natural, or targets of interest. Atmospheric compensation is not a necessary piece
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of information that is required for anomaly detection. It is the aim of the algorithm to draw a
discriminating boundary that can separate the target pixels and background pixels. This means
that the task is a binary classification task, with the two classes being target and background. The
other type of detection algorithm is the spectral matching algorithm which does need a priori
information about the target of interest in order to distinguish whether it is present in the scene.
Pixels are measured in terms of how correlated their spectrums are with known target spectrums.
These known spectrums for the targets can either be taken from truth libraries or from other
pixels where the targets are identified (Manolakis et al., 2009).

The two other types of algorithms are Change Detection and Classification. Change
Detection is the analysis of HSI data in the spatial and temporal domains in order to detect
whether and how a scene changes over those two dimensions. This allows for the observation of
movement, which is especially important in military applications, when subjects of interest could
be attempting to camouflage their movement to avoid detection. Classification is the expansion
of the Target Detection task into multiple class labels in order to detect and record the difference
in materials using a dictionary with recorded spectral information for specific materials or using
pixels in the scene to characterize the spectral information. Shaw states, “Formally, classification
is the process of assigning a label to an observation (usually a vector of numerical values),
whereas detection is the process of identifying the existence or occurrence of a condition” (Shaw
et al., 2002). Each of these three algorithm types can be further split into the domains of dealing
with pure pixels, where the materials of interest occupy full pixels in the image, and mixed
pixels, where there are a percentage of different materials in the same pixel (Shaw, 2002).

Additionally, Dimensionality Reduction and Unmixing are data processing techniques

that deal with issues in the data. Dimensionality Reduction deals with the idea of the “Curse of
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Dimensionality”. The “Curse of Dimensionality” is the property that classification tasks become
increasingly difficult when more and more dimensions, or features, are added into the problem
(Friedman, 1996). When HSI sensors collect 210 bands of information about the reflectance of
the materials in a scene, there is a lot of information that can be reduced due to correlations
between the features. Dimensionality Reduction is the process of removing the excess
information that increases the computational cost of the analysis while maintaining the amount
of information that is used to differentiate between the target and the background. Shaw states,
“Dimensionality reduction leads to significant reductions in computational complexity and also
reduces the number of pixels required to obtain statistical estimates of a given accuracy”

(Shaw, 2002). Usually, Dimensionality Reduction is performed using Principal Components
Analysis. Unmixing is the process of looking at pixels with more than one class of material
within them and using an estimation of the amount of those materials to aid in the distinction
between the classes. Unmixing is important for images that do not have spatial resolution high
enough to perfectly distinguish target from background, which is almost all of the cases when
collecting images in real-world scenarios. Unmixing will not be approached within this research

effort.
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Figure 1. - Spectral Processing Algorithms (Shaw, 2002)

Collection of Hyperspectral Imaging Data

Fingerprinting has been a method of identifying and classifying individuals for many
years in detective and forensics work. This example of classification has become a cliché in
media, including in films and television shows. The process is simple and is often
unaccompanied by any type of statistical algorithm. The only items needed for this type of
classification are the fingerprints at the scene and a database, or truth set, of fingerprints that they
can be matched to with some degree of certainty. This matching allows the detective the ability
to discriminate potential matches that correspond with those unique fingerprints from those who
have different patterns, and ultimately, result in substantive evidence that can be used to convict
a person of a crime.

Hyperspectral imaging is the fingerprinting of the remote sensing and imaging world.
Instead of unique, literal fingerprints, the methodology is used to perform a type of pattern
matching using the way that the unique material reflects, absorbs, and emits electromagnetic

energy that it is exposed to from various sources, including most prevalently, the illumination
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from the sun. This phenomenon of reflectance, absorbance, or emittance and the translation of it
into a unique signature that can be analyzed to tell it apart from other materials is captured by
sensors. These sensors are focused on a scene in order to collect a set of images as if they were a
stack of playing cards, with each card corresponding to a unique spectral bandwidth in the
visible, near-infrared (NIR), and mid-infrared (MIR) portions of the electromagnetic spectrum.
Figure 2 represents the spectral reflectance signatures of green vegetation, soil, and dry

vegetation within the visible and NIR portions of the spectrum.
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Figure 2. - Reflectance Spectrum for Vegetation and Soil (Manolakis, 2003)

Each of these playing cards can also be analyzed and interpreted in the more intuitive
spatial dimension in order to discern which pixels contain targets or anomalies that may be of
interest to the analyst and ultimately the warfighter and the decision maker. The analysis of the
images in the spatial dimension helps to create the truth database that each spectrum has to be
compared to in order to perform discrimination and detection of each individual pixel.

The size and representation of the pixels on the ground depend on the spatial resolution

as well as the collection mechanism of the sensor, with each of these sensors commonly
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connected to aircraft or satellites making passes over the specific area of interest on the ground.
Some pixels may represent miles of area and thus contain many materials that mix the spectrums
of the pixels, making it more difficult to tell materials apart and thus necessitating more
advanced algorithms with higher computational cost and effort to distinguish each material from
these mixed pixels. This scenario is analyzed using the Unmixing Algorithms discussed
previously. Some pixels may represent only small swaths of land of a few square feet in area,
which contain unique signatures that could represent metal from tanks, skin from individuals, or
the organic spectrums of trees and shrubs. It is these pixels that are in fact hiding vectors of
spectral information in the 3 spectral dimension of what is known as a data cube, which is the
collection method and data interpretation of choice in HSI analysis. The representation of the
data cube is seen in the Figure 3. The image on the left is a representation of the cross-section of
reflectance values in the spectral domain for an individual pixel that will be classified as either a
target or background. The image on the right is the spatial representation of the image for an

individual spectral band.
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Figure 3. - Representation of HSI Data (Manolakis, 2003)

While the data cube seems like some far-out, new approach to collecting data, it is really

just a cognitive representation of data that could still be unfolded into the typical data matrix,
17



representing the independent variables, also known as predictors or features in classification
nomenclature, and the dependent response variable vector format that is common in most fields
of statistical science. The pixels only stand in as place-keepers that represent the index number
of this unfolded matrix format. The response variable in the HSI Anomaly Detection
methodology is the class of the pixel, often representing a binary 1 or 0, to represent what are
considered target pixels that are of interest to background pixels that the target pixels must be
distinguished from. Target/Anomaly Detection algorithms help perform the distinguishing as
they set up a measurement parameter(s) that can be used to determine whether the pixel is
considered an anomaly or part of the background. For anomaly detection, spectral information is
not considered part of the a priori knowledge set for the data, but only information whether the
pixel represents a target or part of the background. The algorithm then uses a distance
measurement or a distinguishing measurement between the Pixel Under Test (PUT) and the
distribution of the background to determine whether the pixel is a target or background pixel
(Borghys et al., 2012).

Figure 4 shows a spectral decomposition of soil, water, and vegetation for reflectance
data in a scene, collected from a sensor on an aircraft. As seen in the figure, each spectrum in the
Visible and NIR spectrums is significantly different from one another and can be distinguished
using the appropriate algorithm. For anomaly detection, the background in this situation could be
represented by any of the soil, water, or vegetation spectrums, while the target would most likely
be the buildings or roadways in the image. However, these are arbitrary designations based on

input of the analyst and Decision Maker.
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Figure 4. - HSI Imaging Collection Process (Dube, 2009)

Radiance vs. Reflectance

An important distinction in the collection of HSI data is the difference between Radiance
and Reflectance data. The sensor observes and digitizes the radiant flux, or radiance, that enters
the sensor’s aperture. For each ground pixel, the radiance is composed of both the illumination
that comes directly from the sun’s rays and the amount that the material reflects back into the
sensor. These can be separated as the radiation reflected from the pixel of interest itself, the
radiation reflected from the surface surrounding the pixel of interest and scattered in the air, and
the radiance the occurs due to the photons scattered without ground contact
(Manolakis et al., 2009). These measurements are different for each individual wavelength.
Other factors that creep into the equation include the angle of the sun, the viewing angle of the
sensor, the solar radiance from atmospheric scattering, the illumination from reflected light of

other materials, shadows in the scene, and atmospheric scattering, along with biases from the
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sensor (Shaw, 2002). Therefore, pre-processing must be accomplished in order to compare
apples to apples. Usually, this includes taking the pure radiance data and performing atmospheric
compensation to determine reflectance data, which is then used in the data processing

applications and then in the unmixing and detection algorithms. This process is seen in Figure 5.
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Figure 5. - Radiance and Reflectance Translation (Shaw et al., 2003)

Spectral Variability

One of the difficulties in anomaly detection is the variability of the target material’s
spectrum in the wavelength domain and the interaction with these spectrums with the spectrums
of those of background materials. These inherent variabilities are a result of atmospheric
attenuation and scattering, sensor resolution, and slight changes in material composition
(Manolakis et al., 2009). This causes the problem to go from the deterministic domain and adds
noise to go to a stochastic domain. Additionally, the resolution of the sensor in the spatial
domain needs to be appropriate for the situation, so targets of interest can be fully separated from

the background for each individual pixel. If this is not done, mixed pixels occur, and
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methodologies such as target fill factors must be used to distinguish the components of the pixel.

These issues are highlighted in Figure 6.
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Figure 6. - Target Detection Algorithm Issues (Manolakis, 2010)

Often times, the features at the unique spectral bands are modeled as normal distributions
that are correlated with the other spectral features of each of the pixels. Therefore, the collection
of pixels for each class can be described as multivariate normal distributions with certain means,
or centroids, and covariance matrices that describe the covariance, which can be normalized as
the correlation of the factors in the vector for each pixel. Statistical inference methodologies
using normal distributions have been studied and used extensively in the literature of
classification and anomaly detection algorithms due to their mathematical representations and
robustness of performance (Manolakis and Shaw, 2002). Manolakis and Shaw state that

Algorithms based on normality assumptions are used to derive many detectors due to

their usefulness in many practical applications, the theoretical intuitiveness of their

operation and performance, and their use for the discovery and development of
algorithms for nonnormally distributed HSI data (Manolakis and Shaw, 2002).
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Figure 7 displays an example of class separation in a cross-section of two spectral bands,
620 um and 960 um. This example is a false-coloring image where each color represents a
different class of object in the image. It can be seen that some objects are easier to classify than

others, with various levels of heterogeneity.
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Figure 7. - Two Dimensional HSI Representation (Manolakis, 2003)

The overall methodology of the development and comparison of detection algorithms
hinges on the ability to accurately model the spectral variability that is inherent to the target and
background distributions (Manolakis et al., 2009). This variability is a product of the size of the
target in the scene and its mixing with background within pixels, the environmental conditions
present in the scene, sensor noise and resolution, and the stochastic component of the error

within the spectra of the target and the background.
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An alternative approach that will not be studied in this research is the geometric approach
which treats the spectrum as a vector that varies in an M-dimensional subspace of the data space
(M<p), where p is the number of spectral bands. This approach treats the spectrum as a linear
combination of vectors that constitute the subspace of the variability. These vectors are known as
endmembers and can be taken from a library of previously collected data for the specific material
or obtained using eigenvectors from the correlation matrix for the spectral bands (Manolakis et
al., 2002).

Basic methods for the whole domain of supervised learning and classification will be detailed in
the following section. These algorithms represent the classification of data points with various

amounts of assumptions.

Supervised Learning/Pattern Classification

The following is a brief discussion of the methodology of Supervised Learning. Within
the realm of supervised learning, the class labels are known up front and are used to build and
improve the classifiers. Since within the datasets used in this research the pixels that represent
targets and those that represent background are known a priori, this research deals primarily in
Supervised Learning. This is in contrast to unsupervised learning algorithms, in which the class
labels are unknown, and instead, analysis is done to estimate and separate classes using their
intrinsic qualities. Unsupervised learning is primarily done with various clustering algorithms.

The process of supervised learning is comprised of the original collection of the data,
which in HSI is the sensor collection of HSI data from an aircraft or satellite. This raw data gets
pre-processed by filling in values for missing data or extracting features using methods such as
Principal Component Analysis to reduce the size of the feature matrix. There could also be some

initial work done due to the images or datasets not being in a standard form. This would be the
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case when sensors collect images at different angles and in different weather conditions. This
reduced feature matrix is then sampled by splitting some of the data in a training set and some in
a test set. Theses training and test sets are then put through an additional round of pre-processing
in order to further reduce any redundant information (Raschka, 2014).

The resulting training set is placed within a learning algorithm to train it to make correct
decisions about target and background splits. Once the learning algorithm is sufficiently trained,
certain hyperparameters are developed and optimized to assess model quality. These
hyperparameters are quality assessments of the algorithm that are independent to any learning
that is accomplished from the training sets of data. These parameters include bias and variance
estimates that ensure adequate generalization of the algorithm. Once these parameters are
optimized, the model is usually kept as a representative model. Throughout this training process,
cross validation is accomplished to split the available data into groups for training and some for
testing and finally validation. Training allows the model to learn the data and draw adequate
decision boundaries. Testing data is done to ensure that the model is generalized to fit other sets
of data without propagating too much bias (Raschka, 2014).

Post-processing is done by assessing the model using a confusion matrix that is
comprised to true positive, true negatives, false positives, and false negatives. These values are
also manipulated into other values that can be used to assess certain probabilities of classification
performance. The main goal of using a confusion matrix is to develop robust measurements that
can be utilized in many different situations with many different assumptions, including prior
costs and probabilities. For that specific instance of the interaction between the model and the
training set, the total number and percentages of classification rates are recorded and used to get

an overall interpretation of model accuracy. Each one of these measurements is prone to its own
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bias and variance and caution must be heeded when attempting to make any overarching logical
conclusions using this type of post-processing assessment. From this step, the model can then be
tested recursively on new data, which helps the analyst optimize parameter values, or it can be
finally validated on a separate set of data. When this tuning and refinement is completed, the
model can then be used to make predictions on brand new, real-world data, with some

confidence that the model is performing well (Raschka, 2014). Figure 8 captures this process.
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Figure 8. - Supervised Learning Overview (Raschka, 2015)
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The process of training, validating, and testing the model is seen in Figure 9. Error,
consisting of bias, variance, and noise, is propagated when using the model developed from the
training set to model the data in the validation set. Several instances of the model at various
degrees of complexity are developed, and the validation set error (after integrating all forms of
error) is minimized to find the optimum complexity. The training and validation sets are thus
utilized for assessing the final model, which is then assessed against a test set, which measures
the performance that is expected for that particular model specification. The test set error
components are then integrated and used as a guideline for the amount of error present in the

model.
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Figure 9. - Testing, Training, and Validation (Dougherty, 2013)

26



Within the realm of anomaly and detection algorithms, likelihood ratio tests are often
used to test whether the pixel under test is part of the background or part of a different, target
distribution. The basic formulation of the likelihood ratio test is based on the null hypothesis that
the pixel is from the background distribution and the alternative hypothesis that it is part of a

different target distribution. This is formulated as a ratio of probabilities (Dougherty, 2013):

fi(x|target present)  fi(x|H;) (1)

Alx) = fo(x|target absent) B fo(x|Hy)

where
x represents the vector of the pixel under test
A(x): Likelihood ratio value
f1(x|Hy): likelihood of observing x under the target present hypothesis (H;)

fo(x|Hy): likelihood of observing x under the target absent (background) hypothesis

(Ho)

If the value of A(x) is over a threshold that is chosen by the analyst, the pixel is
considered a target. If it is below the threshold, it is considered part of the background. In many
systems, the goal is to maximize the probability of detection while keeping the probability of
false alarm as low as possible. This is known as the Neyman-Pearson (NP) criterion (Manolakis
et al., 2002).

The multivariate Gaussian distribution is often used for hyperspectral image
classification. This distribution is used to model target distributions that are full pixel targets.
This distribution is also used to model the background pixels in the scene, and there may often be
a mixture of several multivariate Gaussian distributions inherent within the background. The

hypothesis test that is used in this situation is based on the following hypotheses:
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Ho: x~Np (ip, Zp) )

Hy: x~Np (Ue, ) 3)

where
x represents the vector of the pixel under test
N, is the pdf of the multivariate Gaussian distribution
Up, Zp, are the mean and covariance matrix of the background distribution

Uz, Z; are the mean and covariance matrix of the target distribution

Naive Bayes Classifier

A naive Bayes classifer is a discriminant function that is solely based on using Bayes’
rule with the assumption that each of the features that are used within the target and background
distributions are independent. Bayes rule is formulated as the following (Dougherty, 2013)

(Duda et al., 2001):

likelihood * prior(probabilit 4
Posterior(probability) = p. (P Y) @
evidence
This formulation is equivalently,
x|Target Present) » P(Target Present 5
P(Target Present|x) = px|Targ p)(x) (Targ ) ®)

The posterior probability in the target/anomaly detection case is the probability that the pixel is a
target given the features that are used for classification. Likelihood has the same interpretation as
before, which is the likelihood that the pixel is part of the target distribution. This is equivalently
interpreted as when all other things being equal, the category, target or background, for which
the likelihood is larger, is more likely the true category. The prior probability is a measurement
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of the knowledge that we have that we can predict a priori that the pixel is either part of the
target or the background. Usually this is estimated from the number of pixels that are actually
targets and the number that are actually background. The evidence is largely ignored in this
formulation and is only a scale factor that states how frequently we will measure a pattern with
the individual feature value and it ensures that the posterior probabilities sum to one (Duda et al.,
2001).

This formulation assumes that the features are all independent in the scene and the
classification is done simply by assigning the pixel to either target or background depending on
the maximum a posteriori (MAP) probability. This means that each feature has a conditional
probability of the predicting the class, and due to independence, the posterior probability is
calculated by multiplying all of the probabilities for each individual feature together for that
specific class. This resultant probability constitutes the likelihood. This is then multiplied by the
prior distribution. Therefore, the decision is to select that the pixel is a target if the following
holds (Dougherty, 2013):

p(x|Target Present) = P(Target Present) > p(x|Target absent) * P(Target absent) (6)

Dougherty discusses the implications of the independence assumptions:

Despite the fact that far-reaching independence assumptions are often inaccurate, the

naive Bayes classifier works well in many real-world situations. The decoupling of the

class conditional feature distributions means that each distribution can be independently
estimated as a one-dimensional distribution. This in turn helps to alleviate problems
stemming from the curse of dimensionality. Like all probabilistic classifiers under the

MAP decision rule, it arrives at the correct classification as long as the correct class is

more probable than any other class; hence, class probabilities do not have to be estimated

very well. In other words, the overall classifier is robust enough to ignore serious

deficiencies in its underlying naive probability model” (Dougherty, 2013).

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis is used to build a Quadratic Detector in cases when the

covariance matrix of the background does not equal the covariance matrix of the target
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distribution. This discriminant function is quadratic due to the quadratic term still being present
in the function. For two features, the discriminant will be ellipses, circles, parabolas, hyperbolas,

lines or multiple lines (Dougherty, 2013). The likelihood ratio value is the following:

_ 1% M2exp [1/2(x — p) 57 (x — 1) (7)
|Z¢[*2exp [—1/2(x — up) 25" (x — pp)]

A(x)

The logarithm of this function yields:

y=D(x) = (x—pup)"Zy  (x — pp) = (x — )" (x — ) (8)
This is a comparison of the x vector under test of the Mahalanobis distance between the target
and background distributions. Figure 10 shows the resulting decision boundaries for various
constructs of the two Gaussian distributions that are used in the certain example. Due to the
shapes of the elliptically contoured distributions, the boundaries could be straight lines, ellipses,

circles, or hyperbolas, which are, in fact, all quadratic boundaries.
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Figure 10. - Quadratic Discriminants (Duda et al., 2001)

Classification Trees

Classification trees are structures comprised of decision nodes that allow the analyst the
ability to divide the training data set into groupings based on binary splits at each node. The
starting node is denoted a root node that is considered to be the parent of every other node.
Branches are formed by splitting the data at each individual feature in a recursive fashion. When
the tree is built to the actual class of the response variable, or until some hyper-parametric

threshold is reached, the tree reaches the leaf nodes. The tree is updated during the process of
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fitting as it decides the best splits of the data based on the most significant features. The main
advantages of the classification trees are that they are easy to use and interpret, which means that
analysts can easily put them into operation without needing the complex knowledge necessary to
explain and use other classification algorithms. Most often, the feature space that is analyzed
with Classification Trees is comprised of categorical factors that have no direct interpretation of
distance between one another. For example, there is no direct interpretation of the distance
between category levels “Blue” and “Red”. Questions at each node can be asked to determine the
correct state of nature for each of the response classes. These questions help the analyst
understand what comprises each class in terms of attributes, and which attributes are the most
important to explicitly describe the categories. At each node, a decision must be made to
determine whether the node is a finalized leaf node based on the distribution of classes at that
node, or whether another splitting criterion should be used to split into additional branches.
Additionally, the tree structure is very receptive of Subject Matter Expertise, which can be used
to narrow down the decision space.

The typical Classification Tree structure is seen in Figure 11, consisting of the root node
that contains all of the points in the dataset. At this point, the most discriminating rule is used to
split the data into two sets. This is whether or not the data in this case, the fruit, is green. This
process is reiterated at these two separate nodes, using a value of a feature distribution that
separates the data into two groups using a distance or information metric. When the process hits
a certain threshold and can no longer be split, or each of the nodes contains values from only one

class, the process is terminated. In this case, the largest leaf nodes contain only two fruit.
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Grapefruit Lemon Cherry  Grape

Figure 11. - CART Representation (Duda et al., 2001)

Figure 12 represents the types of decision spaces that are developed when creating and
implementing trees. These spaces are necessarily perpendicular to the feature axes, as at each
split, the question being posed is a binary decision that separates the classes in some proportion.
However, any decision space can be approximately estimated by growing the tree as much as
necessary. There is an inherent bias/variance tradeoff when creating these trees, as growing the
tree too large is considered over-fitting to the data in the training set, and under-fitting the tree
results in bias in that all classes are not specifically or accurately separated into classes. The
proper size and complexity of the tree is computed by using pruning techniques that optimize

certain parameters.
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Figure 12. - CART Decision Boundaries (Duda et al., 2001)

Figure 13 is an additional representation of the orthogonal binary decision space that
separates class labels in a rectangular grid like pattern. If more and more of these grids were
overlaid on an image or dataset, the grid could roughly approximate any class distribution.

(Kuncheva, 2004).
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Figure 13. - CART Decision Boundaries (Kuncheva, 2004)
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In order to create the best possible tree, there must be measurements of how each set of
nodes is separating the classes as much as possible, so each final leaf node is as discriminatory as
possible with a higher proportion of one class or another. The amount of mixing of class labels
that each leaf mode contains is known as impurity, with a leaf node that has the same proportion
of one class as it does the other having the most impurity, while a leaf node with only one class
is at 100% purity, or 0% impurity. The various measurements of impurity are seen below (Duda
etal., 2001).

Entropy impurity:

i((N) =-— Z P(w;)log,P(w;) 9)
j
Gini impurity:
1

i(N) = Z P((Di)P(a)j) = E * [1 — Z PZ(w]_)] (10)

i#j I
Misclassification impurity:

i(N)=1- m}ax P(wj) (11)

where
P(wj) is the prior proportion of class w; at the node
A representation of the various impurity measurements for a two-class problem is seen in
Figure 14. As the proportion of one class to another approaches 0.5, the impurity measure
reaches its maximum, which for Entropy is 1.0, while it is 0.5 for Gini and Classification
Impurity. As the proportions get closer to 0.0 or 1.0, the impurity measurements tend towards 0.
In Figure 14, the variable p is the proportion of data points that fall into some class for the node

being analyzed. As the proportion of points at the node reach a uniform distribution of 0.5, each
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of the measurements are at their highest levels. As the purity of class at the node increases (or
decreases), each of these measurements will approach 0. The nodes with the lowest impurity
measurement will be selected for the split, as they contain the most information, as the largest

proportion of one single class will be represented by that node split.
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Figure 14. - CART Decision Measurements (Dougherty, 2013)
Confusion Matrix
A confusion matrix is the means in which a model can be assessed for accuracy of
assigning data points to the correct classes for a binary decision classification. This decision is
comprised of positives and negatives, usually with positives meaning some sort of target of
interest, while negatives meaning some sort of background population that is not particularly of
interest. Figure 15 is a representation of the typical confusion matrix and the resulting measures

that can be derived.
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Condition Positive = Condition Negative
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Outcome  fest Negative predictive value =

False Negative

Outcome True Negative Z True Negative
. (Type Il error) =
Negative Z Test Outcome Negative
Sensitivity = Specificity =
z True Positive Z True Negative

% Condition Positive Z Condition Negative

Figure 15. - Confusion Matrix Terms (Sharma et al., 2009)

The confusion matrix is naturally extended to a graphical representation of distributions
for the two class problem for each individual feature. Figure 16 is a representation of a single
feature and the class distribution associated with that feature. The blue distribution is arbitrarily
labeled the negative distribution and the red distribution is labeled the positive distribution. The
area in blue is the probability that a data point in the negative population is correctly classified as
a negative, which is calculated as the True Negative Fraction, and the area in red is the
probability that a point belonging to the positive class is classified as a positive point, which is
calculated as the True Positive Fraction. The light red area represents the case of a point
belonging to the positive class being classified as a negative point, which is calculated as the
False Negative Fraction, and the light blue area is the case where a truly negative data point is
classified as belonging to the positive class distribution, which is the False Positive Fraction. The
results for each of these percentages are seen in the matrix alongside the distributions. The TPF
and FPF values are plotted within a Receiver Operating Curve (ROC), with each particular

instance along the curve being calculated for some particular threshold or parameter value. The

37



Area Under the Curve (AUC), is a useful measurement of the accuracy of the classifier for
thresholds and parameters of interest, with the line associated with a random guess of positive or

negative going from the bottom left of the plot to the upper right. As the classifier becomes more

accurate, the AUC value will approach unity (Dougherty, 2013).
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Figure 16. - Decision Thresholds and ROC Curve Representation (Dougherty, 2013)

Value Focused Thinking

The concept of Value Focused Thinking (VFT), was developed by Ralph L. Keeney at
the University of California in order to break the intuitive trend of focusing on alternatives when
making decisions, and thus trying to fit the options to the objectives and not the objectives to the
options. Keeney considers the key goals that are used to develop the foundations of correct
decisions to be values. He states, “Values are fundamental to all that we do; and thus, values
should be the driving force for our decision making. They should be the basis for the time and
effort that we spend thinking about decisions, but this is not the way it is” (Keeney, 1996). This
is similar to the idea of jumping to conclusions without the necessary logic in place to form the
basis of why the conclusions are valid in the first place. By forming this type of structural

argument for the decisions that you make, new alternatives can be synthesized, and sometimes,
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new values can be deduced from this logic, which makes the process iterative. Keeney believes
that values should always be the first place to start.

Keeney expands on the delineation of alternative-focused thinking from value-focused
thinking by arguing that alternative-focused thinking is more of a way to solve decision
problems, while value-focused thinking goes beyond this realm and helps identify desirable
decision opportunities and create new alternatives. He believes that there are three main
differences in these perspectives. He states,

First, significant effort is allocated to make values explicit. Logical and systematic

concepts are used to qualitatively identify and structure the values appropriate for a

decision situation. Second, this articulation of values in decision situations comes before

other activities. Third, the articulated values are explicitly used to identify decision

opportunities and to create alternatives (Keeney, 1996).

From this statement, it is clear that he values structure in the decision making process that allows
the optimization of inference from all of the information that is presented a priori.

Figure 17 lists the advantages of thinking about values over thinking about alternatives.
The advantages range from the improvement of communication and relationships between the
people involved in the decision, and the improvement of information collection, to helping create
and evaluate alternatives, as well as discovering strategic policies and objectives that may have
been hidden before. The main point of this process is that alternatives are only one product of

keeping the values in focus and there is a plethora of other positive byproducts that help the

organization.
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Figure 17. - Value Focused Thinking Advantages (Keeney, 2009)

Keeney discusses his view that decisions are complex ideas that are structured using
multiple objectives, with each objective being a statement of some end that is desired to be
reached in the context of the decision. This means that each objective is dependent on the
decision context that it is analyzed and made in, the object that is being decided upon, and some
delineation of the preference that a decision maker has, which is used to optimize the final result
of the parameter that is extracted from the decision. There is also a difference between the terms
‘fundamental objectives’ and ‘means objectives’ which are both used in a decision making
context. Fundamental objectives are the actual ends to the means that are valued in the context,
while means objectives are met in order to achieve those ends. The broadest objectives in any
organization are considered strategic objectives, which help meld all of the other decisions made
by the organization.

In order to understand the true meaning of these objectives, many times the analyst must
interview the Decision Maker (DM) or Subject Matter Expert (SME) to drill down to the logical

statements and axioms present in the objectives. If there is confusion about what the objectives
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actually represent, this confusion could propagate to the choice of alternatives and other
decisions. This type of ‘devil’s advocate’ analysis is also useful to discover other important
objectives that had not been thought of previously. Additionally, it is important to rank and
weight these objectives as some of the time and resources spent reaching one may be out of
proportion with the actual impact and importance these objectives have on the overall decision
making. By changing the distribution of weights from a uniform distribution to one that weighs
more important objectives higher, a more realistic representation of the quality of each individual
alternative that is applied to the decision can be achieved. All objectives should be listed, ranked,
and a percent weight of importance should be distributed. Analyzing this list of objectives could
help determine if some group of objectives are out of proportion with others or which ones need
to be ranked higher than others based on strategic objectives.
Keeney discusses the steps within the value assessment as thus,
The value assessment comprised several separate tasks: listing the objectives,
distinguishing between means objectives and fundamental objectives, identifying
measures for the objectives, and prioritizing them. The results of each task helped us to
articulate company values and use these to suggest decision opportunities that might be
worthwhile to pursue (Keeney, 1996).
This demonstrates the ability for this process to synthesize new ideas and create even more
decision opportunities that were not known a priori. Many types of different surveys can be
utilized beyond just interviewing Decision Makers and SMEs to extract information. These
include surveys to any type of stakeholder, including, often, the general public, the employees or
users of the alternatives, or anyone else that could be affected by the decision. Keeney explains,
The strategic objectives of an organization can guide the identification of decision

opportunities that enhance both the likelihood of achieving those objectives and the
degree to which the objectives are achieved. This process, part of value-focused
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thinking, helps to put the decision-maker in control of the decisions being faced rather
than leave that control to others and to happenstance” (Keeney, 1996).

In order to develop correct alternatives and make correct decisions, the analyst must be proactive
in the process and should not wait for knowledge to reveal itself.

There is often confusion about how to list objectives and which ones should be used to
help the analyst provide input to the Decision Maker. VFT contains many different procedures
that assist in the compiling of objectives, categorizing the objectives as means or ends and
logically ordering them, using the objectives to help discover or create new alternatives, and
finally to understand new opportunities within the decision making process. It is necessary to
poll the decision maker by asking for a comprehensive list of objectives under the assumption
that there are no constraints limiting or preventing the fulfillment of the objectives. It is also
important to then ask what the objectives would be after some amount of assumptions. Keeney
states,

Often one begins to think hard about a decision situation only after some alternatives

become apparent. Articulating the features that distinguish existing alternatives provides

a basis for identifying some objectives. For example, in considering alternative sites for

an airport, one feature that differentiates the alternatives might be the disruptions to

citizens due to high noise levels. This suggests the obvious objective of minimizing
disruption from noise. You might ask respondents to list desirable and undesirable
features of alternatives and use these to stimulate thought about objectives

(Keeney, 1996).

The raw list of objectives that is generated from this procedure should be analyzed to
correctly align each to either means objectives or fundamental objectives. If the objective is an
essential reason for interest in the overall situation, the objective is a fundamental objective,

while if it is just a means of accomplishing some other objective, it is a means objective, and the

additional objective should be also assessed for importance and type. Specification must be done
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to logically decompose the objective into its different parts, which could also lead to additional
objectives. Keeney explains,

Suppose the CEO of a service firm identifies one objective as ‘to minimize

nonproductive time spent by employees’. To better understand this objective, you might

ask the executive to be more specific, or to list characteristics of nonproductive time. You
might ask how nonproductive time occurs and whose nonproductive time is of concern.

All of the responses should help specify the objective (Keeney, 1996).

Creating alternatives can prove to be a difficult task for various reasons. One reason is
that many different types of alternatives could be left of an initial list. This is because there is
often a need for analysts and decision makers to quickly find a limited set of alternatives and
start working towards assessing those alternatives without expanding the list and taking the time
to understand what is not on the list. There is also an anchoring effect that occurs due to the
dependence that new alternatives have on previously listed alternatives, and each alternative will
be within some radius of the other in terms of originality and scope. Most of the new alternatives
will only be small tweaks of the previously deduced alternatives, and true originality is left in the
minds of the analysts and DMs. Keeney argues, “Focusing on the values that should be guiding
the decision situation removes the anchor on narrowly defined alternatives and makes the search
for new alternatives a creative and productive exercise” (Keeney, 1996). Alternatives should be
focused at fulfilling the demands of achieving the specified values and should be focused on the
generation of a set of the most promising ones. A possible way of discovering new objectives is
to think of what alternatives would be available if that particular objective was the only objective
on the list, and then taking permutations of objectives and asking the same question. Alternatives
should then be combined into single alternatives if possible. Means objectives should also be

used for the same reason. At the end of the entire decision process, it is helpful to think if any

new alternatives can be generated after the analyst’s state of knowledge has been fully updated.
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Keeney admits,
It may initially be difficult to articulate, review, and revise your objectives. You may get
the feeling that you are not “solving’ your decision problems when you are just thinking
about objectives. You may feel it is merely a philosophical exercise to articulate your
values, whereas the decision problems facing you are real. But whether or not you label
thinking about your values as an exercise, the results can help with any of the real
decisions that you make. One good decision opportunity can repay you for a lot of
‘philosophical’ thinking” (Keeney, 1996).
In this way, VFT is all about articulating values logically in order to understand both the decision
opportunities and additional alternatives that can be developed in cases that without this
structure, it would be difficult or impossible to uncover.
A systematic representation of the VValue-Focused Thinking process is seen in Figure 18.
This chart is comprised of ten different steps and two main subsections. The first step is the
identification of the decision problem after careful study and deliberation with all of the Decision
Makers and Stakeholders. From this, Step 2 is to create the value hierarchy to understand which
objectives are means objectives and which are fundamental objectives, and how the values are
related. From this hierarchy, measurements of the values must be decided upon in order to
enumerate the fulfillment of the objectives. Step 4 is to create functions based on SME and DM
input to understand which thresholds of the fulfillment of the measures should be weighted
higher and whether these functions should be categorical or continuous functions. The hierarchy
is then weighted in Step 5 using either local or global weights within the total hierarchy or only
within the values, weighting each of the measurements against each other one at a time. These
five steps complete the first major phase of the process, as now alternatives can be generated

using the updated situational awareness that has occurred from logically eliciting the decision

formulation.
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As discussed previously, alternatives can be uncovered at each step along the way and
should be always sought out in a parallel process as more knowledge is created. At this point, the
alternatives that are currently in our stead can be scored using the hierarchy, which constitutes
the completion of the value model. However, after this stage, Step 8 is to complete Deterministic
Analysis in order to weigh each alternative against each specific measure, which can help us find
bounds on which alternatives would be useful or chosen under certain situations, and which
would be totally out of the question due to the alternatives that are better. Sensitivity Analysis is
done in Step 9 in order to change the parameters and discover if there would be any change in
the conclusions under different assumptions or desires. Finally, Step 10 is the communication of
the Conclusions and Recommendations for the decision situation. From here, the whole process
could be iterated if the selected alternative leads to even more decision opportunities. The main
point is that the analyst’s work is never done, and they must be vigilant and adaptable to new and

improved alternatives to make more refined decisions.
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Figure 18. - VFT 10-Step Process (Shoviak, 2001)

45



An application of the Value Focused Thinking process was utilized by Major Brian
Bassham, PhD in 2006 in order to assess the development of Automatic Target Recognition
(ATR). Two separate perspectives were studied during his assessment, including the Evaluator’s
and the Warfighter’s. Bassham explains,

The method involves the development of a two-pronged decision analysis model that

maps ATR MOPs (Measures of Performance) into values. This is a direct mapping for

the Evaluator. However, the Warfighter thinks more in terms of MOEs (Measures of

Effectiveness). To incorporate the Warfighter perspective, a combat model, using a

notional, unclassified scenario, was exercised in a designed experiment to produce a

response surface that could serve a surrogate and intermediate mapping from MOP to

MOE (Bassham, 2006).

This methodology is a unique combination of the VFT process in two different
dimensions, the Warfighters and the Evaluators. It is seen in Figure 19. The MOPs in this case

constitute the values that would be used in a VFT hierarchy.

ATR .| Evaluator .| Evaluator
MOPs DA Model Value
ATR | || Combat ATR | [Warfighter Warfighter
MOPs Model MOEs DA Model Value

Figure 19. - VFT Process for Evaluators and Warfighters (Bassham, 2006)

The type of decision opportunity framework was slightly different than Keeney’s ten-step
process, but it had the same elements. As seen in Figure 20, the steps used included first
identifying the problem up front, then the objectives and alternatives, and then the next step
combined the steps of developing measures, creating value functions, and weighting the value
hierarchy in the previous process. This step is considered a decomposition and modeling of the
problem in terms of the structure, uncertainties, and preferences inherent in the model. This
would be reflected in the previous framework by the weights associated to the values and value

functions that are associated with the measurements. From here, the best alternative is chosen,
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and then reiterative sensitivity analysis is accomplished to ensure the robustness of the choice of

alternative. Finally, after sufficient analysis has been accomplished, the final alternative is

chosen and implemented.
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Figure 20. - Bassham's VFT Methodology (Bassham, 2006)

The Hierarchy is seen below in figure 21. The top level values include robustness,
classification ability, employment concept, declaration ability, cost, self-assessment accuracy,
and overall detection performance. Some ideas from this methodology were used to accomplish

the research in this thesis. Some however, are specific to the context of a broader range of ATR

than is studied herein.
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Figure 21. - ATR Value Hierarchy (Bassham, 2006)

The weights that were chosen and implemented as a result of Step 5 of the VFT hierarchy are
seen in Table 4. The same delineation of weight and ranking is done here as was done in
Keeney’s article. This helped discover which objectives were initially under or over prioritized.
This same assessment of ranking is done in this research effort and is one of the main cruxes of

the advantages of VFT.
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Table 4. - Evaluators MOP's (Bassham, 2006)

Objective MOP Total Rank
Paossible
Weight
%A Pp (TGT/NTGT) 0.0850 4
Robustness %A P (Type) 0.0550 3
%A Poc (Class) 0.0600 6
Detection FAR|Pp 0.0729 5
Performance Pr4Pp 0.0971 3
Employment Concept Employvment Rating 0.1500 1
Declaration Ability Ppre 0.1300 2
Classification P 0.0521 9
Ability Pee 0.0579 7
Development Money 0.0002 21-23
Development Time 0.0002 21-23
Development Expertise 0.0002 21-23
Development Risk 0.0004 20
Redeployment Money 0.0041 19
Cost Redeployment Time 0.0052 18
Redeployment Expertise 0.0093 17
Redeployment Risk 00104 16
Use Money 0.0152 15
Use Time 0.0305 13
Use Expertise 0.0244 14
Self-Assessment Espp 0.0466 10-12
Accuracy Es poc 0.0466 10-12
Espn 0.0466 10-12

The same type of methodology for creating weights and values structured within
objectives was utilized for the Warfighter’s perspective using the Measures of Effectiveness
(MOEs). This is seen in Table 5. Ranks and values were elicited and compared for each MOE.
Bassham states,

A major complication in the decision-making process is the fact that picking a ‘best’

system based on MOPs does not necessarily lead to superior operational performance. In

an operational environment the system is characterized by measures of effectiveness

(MOEs), which are qualitative and quantitative measures of how well tasks are

performed. The eventual end-user, the Warfighter, cares only about the benefit ATR

technology offers in battle. Thus, selecting an ATR CS based upon superior MOEs would

be of great interest to the Warfighter (Bassham, 2006).

The final results of this study concluded that the evaluator and warfighter would pick two

different optimum alternatives to put in place. This means that there should be some type of

satisficing or mediation done to ensure that both parties are confident with the chosen option.
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Table 5. - Warfighter's MOE's (Bassham, 2006)

Ohjective MOE Total Rank
Possible
Value
Minimize % of Bombs Left 0.0102 14
Hostile % of Mass Destruction Left 0.0596 5
Weapons % of CMs & 5/S Left 0.0357 8
% of S/A & A/A Left 0.0513 6
Minimize Hostile % of Systems Left 0.2149 2
Warfighting % of Personnel Left 0.0682 4
Systems % of C2 Left 0.2977 1
Length of Bartle 0.0124 13
Minimize # of Civilians Eilled 0.0241 11
“Bad Press’ # of Civilian Structures Destroved | 0.0134 2
# of Fratricide Incidents 0.0877 3
Maximize Friendly % of Systems Left 0.0279 9-10
Weapons % of Personnel Left 0.0457 7
Remaining % of C2 Left 0.0279 9-10
Maximize Friendly % of Dumb Bombs Left 0.0032 18
Warfighting % of Precision Bombs Left 0.0073 15
Systems % of CMs & S/S Left 0.0064 | 16-17
Remaining % of S/IA & A/A Left 0.0064 | 16-17

The three different objectives that were developed using the Warfighter’s viewpoint
included Maximizing the Effect on the Enemy, Minimizing Unintended Consequences, and
Minimizing the Effect on Allies. The effect on the enemy was weighted the highest, due to the
correlation of this objective with the success of the mission. This objective was broken down into
Minimizing Expendables Remaining and Minimizing Warfighting Systems Remaining. These
two means objectives represent a combination of the likelihood that the enemy will be crippled
by exercising the mission. Minimizing Bad Press was itself a primary objective that was weighed
by four different measurements that dealt with quantities of events that would be detrimental to
the viewpoint of the military in the eyes of the general public. On the other side of the coin, the
third primary objective, Minimizing Effects on the Allies, was split into the same types of means
objectives as the Enemy Effect objective, although in this case, it is maximizing the warfighting
systems and expendables remaining. A combat model was created to simulate the effects of the

ATR technology in an operational environment. This breakdown is shown in Figure 22.
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Figure 22. - Warfighter Value Hierarchy (Bassham, 2006)

This example highlighted some of the challenges and issues that could be discovered in a
real-world operational situation. Carrying out the analysis to completion helped elicit the
challenges that would occur in making a structured decision, but it also helped to understand
which alternatives should not be considered in future situations under the same assumptions.
Practice makes perfect, and each time a decision situation is analyzed, the analyst becomes more
capable of understanding the nuances that arise and this prepares them for more complicated

scenarios.

Bias/Variance Dilemma
The success and quality of a particular classifier can be analyzed using the bias-variance
decomposition of the classification error. When assessing the difference between the estimated

density of the class label frequency within a set of data and the true density of that set, a useful
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statistic to use is the Mean Squared Error (MSE) between these two densities (Dougherty, 2013).
This MSE can be composed of a combination of error due to the bias inherent in the classifier
and the variance. When training classifiers, if the classifier is not flexible enough too few
parameters) to estimate near the expected values for the class labels, then the classifier will
exhibit high bias. If the classifier becomes too flexible (too many parameters), the classifier is
known to over-fit the predictions towards the instance of the training data set. If this occurs, the
classifier is said to exhibit high variance. This would mean that it is predicting different class
labels when it is exposed to different training sets. Many supervised learning classifiers can be
tuned in terms of this trade-off automatically or by containing a parameter than can be
manipulated by an analyst.

An illustration of the ideas of bias and variance are found in Figure 23, where dart boards
are used as examples (Fortmann-Roe, 2014). In the upper left board, the darts have been thrown
both near the center of the target, exhibiting low bias, and with a high level of precision, as they
are clumped together. In the upper right board, the darts have been thrown near the center of the
target, but with less precision, as there is higher variability in their locations. The board on the
bottom left has a high precision value, as all of the darts are packed together, while they miss
their mark, exhibiting high bias. Finally on the bottom right, the darts are neither packed tightly
together nor thrown near the center of the target, meaning that the process is exhibiting both high

variance and bias.
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Figure 23. - Bias and Variance Comparisons (Fortmann-Roe, 2014)

Figure 24 depicts the phenomenology of the relation between bias and variance and the
training and test sets that are used in the classification approach. As the model complexity
increases and more flexibility is built in the model with additional parameters, the bias, or
closeness of the model predicting towards some target representation of truth, decreases, but the
variation of the classifier’s modeling ability to additional sets of data, the variance, increases.
The prediction error is comprised of the bias and variance components and it decreases in
training, as seen in the blue curve, as the model complexity increases, since the model is being fit
to the training sample. However, the red curve, which represents the prediction error across

model complexity for test samples, would simultaneously increase due to this increase in
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variance. It is important to find the point where variance is tempered for the test sample. At this

point, the model has been adequately trained and tested and can move on to the validation stage.

High Bias Low Bias
Low Variance High Variance
il ———— e e m - -

Test Sample

/

Prediction Error

S

Training Sample

Low High
Model Complexity

Figure 24. - Bias and Variance per Model Complexity (Hastie et al., 2009)

Dougherty explains the concept and importance of over-fitting,

The No Free Lunch Theorem throws into question our preference for avoiding over-
fitting and choosing the simplest classifiers with fewer features and parameters. In the
former case, there are indeed problems for which avoiding over-fitting actually leads to
worse performance. It is not over-fitting per se that causes poor performance; it is rather
the mismatch of the algorithm (in use) to the specific algorithm (describing reality). As
for simple classifiers (in line with Occam’s razor), our bias towards simple solutions may
have an evolutionary basis, i.e., there is a strong selection pressure for simple schemes
which require fewer neurons and less computational time (Dougherty, 2013).

Therefore, the idea of over-fitting stems from assuming that the algorithm that has been
developed is in actuality the correct formulation for a generalized version of reality, when better
algorithms are actually more suitable.

Figure 25 displays the relationship between the number of parameters in the model to the

error decomposition components of the loss function, Bias? and Variance. As the number of
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parameters increases, the model becomes more flexible, and the model fits to the data better.
This means the Bias? value decreases. As the number of parameters increases, the data also
over-fits to the specific instance of data, including the noise that is inherent within that dataset.

Therefore, the variance increases as the number of parameters and thus the flexibility increases.

. -

-

Bias?

Variance

B o e s e - . . g O

Many

Number of Parameters

Figure 25. - Bias and Variance per Number of Parameters (Dougherty, 2013)

The MSE is defined as (Dougherty, 2013):
MSE (x) = E{(x — x)?} (12)
where
x is a single parameter, be it a pixel class of interest or some particular estimate of
classifier performance.
X is the estimate of the parameter of interest.

E is mathematical expectation.
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The bias and variance in this case is defined as the following (Dougherty, 2013):
B(x) = E{(x — x)} (13)
V(x) = E{(X — E(¥))?} (14)
The MSE value is decomposed in terms of bias and variance as (Dougherty, 2013):
MSE(x) = B%(x) + V(x) (15)

A useful example is found within the context of the K-Nearest Neighbors classification
algorithm. In K-Nearest Neighbors, the class of a point of interest is predicted by choosing an
some number of “neighbors” of the point using some choice of distance value. A voting method
is used to determine the class of the point of interest using these nearest points. If too many
points are chosen, the classifier is said to exhibit bias, as the estimated class will not usually
correspond with the actual class, since the classifier is not flexible enough. However, if too few
points are chosen, the classifier is said to exhibit high variance, as the predictions will be fit too
tightly, and any new data sets that are used will not result in quality estimates. When there is
high variance, the classifier is thought of as fitting the estimates to the noise of the particular data
set.

The key to optimizing the classifier is to find an amount of flexibility resulting in a
reduction of bias and variance to an acceptable level. Definitions for the bias and variance in
classification tasks are a still open research topic. There have been multiple proposals for the
definition and calculation of these values, which will be seen in following paragraphs.

The state of nature at a point x in the overall feature space is a random variable w € Q,
where Q is the overall set of possible class labels, and w is the class label that is chosen. The
classifier is used to determine the state of reality by picking the best class label it possibly can

from Q (Kuncheva, 2004). The true values of the posterior probabilities for the multiple classes
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are P(w;|x), and the probabilities across all the possible classifiers that could have been chosen
is Pp(w;]x), which represents the guessed state of nature for that classifier (Kuncheva, 2004). P,
is the probability for a specific training data set D. This represents the probability that a
randomly chosen classifier will assign the particular class label for the point of interest.
I,P(wi|x) = 1 and Z;Pp(w;|x) = 1 (Kuncheva, 2004).

Dougherty states that “The bias of an estimate is the systematic error incurred in the
estimation; the variance of an estimate is the random error incurred in the estimation”
(Dougherty, 2013). The idea of bias for any estimate is the averaged difference between the true
and predicted values. In this particular case, this means that bias represents the difference
between the true correct probability of choosing the correct class for the point in the feature
space and the estimated distribution, P (w;|x).

The idea behind variance is thought of as a measurement of the precision of the classifier
in predicting the class of the point, independent of what is actually going on. Typically for a
random variable, the measure of variability is its variance, but this is not the case for categorical
variables such as the class label of the point. Entropy is often used as an estimator for a

categorical variable, which is formulated as the following:
H == Pylilx)log Py (ailx) (16)
wi
In this case, H = 0 occurs when no variability is present, while H = log ¢, where ¢
represents the number of classes in the data, occurs when the variability is the highest, and each

class label has the same probability of being chosen (Kuncheva, 2004). Gini Index is sometimes

chosen as the variance, which is represented as the following:
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G = Z 1 - Pp(wilx)? (17)

Noise is a measure of variability inherent in reality that does not depend on the choice or

quality of the classifier being used. H and G are often used for noise as well (Kuncheva, 2004).

According to Kuncheva, Kohavi and Wolpert define the bias, variance, and noise as the

following (Kuncheva, 2004):

bias = 2+ 3, (P(i]x) = Pp(w;lx))’ (18)
This bias represents the difference between the true distribution of the particular class and
the guessed one for the specific data set, and this difference is squared and added for each
specific class. Each guessed distribution and probability can be generated from a bootstrap

sample (Kuncheva, 2004).

1
Variance = > (Z 1— Pp(w;]x)?) (19)
w;

The variance can be seen as the change in the best estimate the classifier makes for each
class distribution regardless of what the true distributions are. The variance that is used here is
the Gini index. Each guessed probability of the class distributions will be generated from

individual bootstrap samples (Kuncheva, 2004).
1
noise = > (Z 1 — P(w;]x)?) (20)

This noise value can be interpreted as the variability that is inherent to the process
regardless to the classifier used. The decomposition of the error term into bias, variance, and
noise are different for each of these formulations. For Kohavi and Wolpert, the following is the

breakdown (Kuncheva, 2004):
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1 1
P(error|x) =1 — Z P(w;|x)Pp (w;|x) + o* Z P (w;|x)? + o* Z Pp (w;]x)?
wj wj wi

(21)
1 1 1
=2 [ D P@il0) = Powil)? |45 (= ) Pp(wiln)®) +5 % (1= ) Pyl
w; w; w;
= bias + variance + noise
According to Kuncheva, Breiman defines a noise, bias, and spread term for bias and
variance decomposition. The noise term is the same as the Bayes error for that x (Kuncheva,
2004).
noise =1 — P(w*|x) (22)
bias = (P(w*|x) — P(w*|x))Pp(w*|x) (23)
where

w™ is the most probable class of the specific x vector
w* is the highest likelihood output for the specific x vector from a specific classifier
This bias is always nonnegative due to the maximization of P(w;|x) by w*. The variance term is
Breiman’s formulation is labeled as a spread term, which shows how the distribution that is
guessed by the classifier changes between class labels outside of the w* and w* labels

(Kuncheva, 2004).

spread = z (P(w*]x) — P(w;lx))Pp(w;]x) (24)

WiFEW*
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Breiman’s error decomposition is seen in Equation 25 (Kuncheva, 2004):

Perror|x) = 1 — Z P(w;]x)Py (w;i]x) = 1 — P(w*|x) + P("|x) Z Py (w;]x)
= > PPy (@il)
—1-P(w|x) +Z(P(w*|x) — P(wilx)) Pp(wix) (25)

=1-P(w|x) + (P(w*lx) — P(aﬂx)) PD(w§|x)
+ ) (P@'12) = P(@i]0) Po(wif)
w;
= noise + bias + spread
Domingos takes a different approach to defining bias, variance, and noise, in that he

attempts to develop a uniform definition across all loss functions.
[(T(x),D(x)) is the loss for x that occurs when a randomly selected classifier D is applied to a
vector, x, and where T (x) is the true label at that specific x vector and D (x) is the guessed label.
The bias for the specific x value is:

bias = l(w*, w*) (26)
The bias is independent of the classifier that is being used to determine class label and is only
dependent on the most often guessed label (using resampling), which is considered the majority
label, and designated by w* and the optimal class label for the particular x, which is w*. This
results in bias that is either 0 or 1 depending upon if the label is matched to the optimum class

(Kuncheva, 2004).

variance = & (1 (wﬁ, D(x))) (27)
For the 0/1 loss function, the variance is
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variance = Z Pp(w;lx) = 1 — Pp(w®|x) (28)

wirw*
. (29)
noise = 7 (I(T(x), w*))
The noise stems from the data set distributions that are being analyzed and is independent of
specific classifiers. For the 0/1 loss function, the noise equation works out to:
noise = 1 — P(w*|x) (30)

The best model will result in the posterior probabilities that correspond to the optimal class label
probabilities, which means that P(w;|x) = P(w*|x). Kuncheva then discusses the philosophy of
each member of the bias and variance decomposition for particular loss functions.

“Then the bias measures how far the majority prediction is from the optimal prediction, the
variance shows the variability of the predicted label about the majority prediction, and the noise
tells us how far the optimal prediction is from the truth (Bayes error)” (Kuncheva, 2004).

The error decomposition for Domingos is different depending on the loss function that is
employed.

P(error|x) = ¢, * noise + bias + c, * variance (31)
c4, C, are either constants or expressions that depend on the utilized loss function. For zero-one
loss, expressions are used for these variables that depend on the bias, variance, and noise
functions.

P(error|x) = P(w|x)Pp(wz|x) + P(wz|x)Pp(w|x) (32)
When the example vector is unbiased, bias = 0

P(error|x) = (1 — 2 * noise) * variance + noise (33)
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When the x is unbiased, the probability of error decreases when the variance decreases. This
makes sense, as variance dominates the noise, and focus should be on training the classifier to
decrease this variance component.
When the example vector is biased, bias = 1, the decomposition is the following
P(error|x) = bias + (2 * noise — 1) * variance — noise (34)
Therefore, against intuition, for these biased examples, increasing the variance actually decreases
the amount of error. This may explain why using a large ensemble of biased classifiers will
decrease the total error of classification (Kuncheva, 2004).
Kuncheva describes the relationship between bias and variance for certain situations,
All decompositions of the error are aimed at studying the structure of the error for
different classifier models and ensembles of classifiers. Suppose that we build our
random classifier D using different data sets drawn from the distribution of the problem.
It is natural to expect that simple classifiers such as the linear discriminant classifier will
have high bias (deviation from the optimal model) and low variance. Conversely, flexible
classifiers such as neural networks and decision trees will vary significantly from data set
to data set because they will try to fit the particular realization of the data as close as

possible. This means that they will have high variance but their bias will be low
(Kuncheva, 2004).

The fluidity of the bias and variance quantities changes as parameter estimates are
changed. This can be used to the advantage of the analyst, if the correct parameter manipulation
is done. However, sometimes, the only choice is making a decision on a trade-off between bias

and variance.

If the classifier has a parameter that we can tune, then making the classifier more coarse
and robust will diminish its sensitivity, therefore will decrease the variance but might
increase the bias. Sometimes varying a classifier reduces both bias and variance, thereby
giving a smaller error altogether for certain data sets. This is seen in the k-nearest
neighbor classifier. For tree classifiers, the control parameter may be the depth of the tree
or the constant used in prepruning. Typically, heavily pruned trees will have smaller
variance and larger bias than trees fully grown to classify correctly all training samples
(Kuncheva, 2004).
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Friedman’s Formulation
Bias and Variance for Classification
Friedman was the first statistician to attempt to separate the bias and variance
decomposition from the regression case to the classification case. In the classification case, the
following is true for a zero/one loss function (Friedman, 1997) (Duda et al., 2001).
The following is Target/Discriminant function (Duda et al., 2001):
F(x) =Pr[y =1|x] =1—-Pr[y = 0]x] (35)

The discriminant function is thus:

y=F(x)+e (36)
Var[elx] = F(x)(1 — F(x)) (37)

The target function is thus:
F(x) = elylx] (38)

Mean Square Error is minimized (Equation 39) (Duda et al., 2001):
ep[(g(x; D) — ¥)?] (39)
If equal priors are assumed:

P(w,) = P(w,) =0.5 (40)

then the Bayes discriminant, yz, equals % The Bayes decision boundary will be the locus defined

by F(x) = 2 (Duda et al., 2001). The classification error rate (averaged over each specific x
2

vector), Pr [g(x; D) = y], will result in the lowest error if it corresponds with the Bayes decision
boundary,
Prlg(x; D) = y] = Prlyp(x) # y] = min[F(x),1 - F(x)] (41)

(Friedman, 1997) (Duda et al., 2001).
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If not, then the prediction yields an error that is increased, seen here (Friedman, 1997)
(Duda et al., 2001):

Prlg(x; D)] = max[F(x),1 — F(x)] = |2F (x) — 1| + Pr[yp(x) = y] (42)
This error is averaged over all of the data sets to derive the following (Friedman, 1997)
(Duda et al., 2001):

Prlg(x; D) # yl = [2F(x) — 1| Pr[g(x; D) # yp] + Pr [yp # y] (43)

Duda et al. states, “The classification error rate is linearly proportional to Pr[g(x; D) # yg],
which is the “Boundary Error”, since it represents the incorrect estimation of the optimal Bayes
boundary” (Duda et al., 2001) (Friedman, 1997). Since each training set contains its own noise,
the boundary error will change with the probability density of obtaining a specific discriminant,
which is denoted as p(g(x; D)) (Duda et al., 2001). This boundary error is the captured by the
area of the tail of p(g(x; D)) on the other side of the Bayes discriminant value % (Duda et al.,
2001). In Figure 26, if the class from the normal population was being predicted, but the class
was truthfully the abnormal population, the boundary error would be represented by the tail of
the abnormal population, which is the area designated by b, which is the side opposite of the

Bayes optimum.
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Figure 26. - Representation of Boundary Bias (Dougherty, 2013)

The formula for the area under this tail is given by the following formulation (Duda et al., 2001):

[o9)

([ pla@m)ag irFe <172
1/2

Prlg(x; D) # y,] = (44)

1/2
[ | “ploaim)ag i Feo =12

Assuming that p(g(x; D)) is Gaussian, the following bias, variance decomposition can be made

(Duda et al., 2001):

1
;D) —5
Sgn [F(x) _ 1 €p [g(x )] )

2 JVar[g(x; D)]

Prig(x; D) # yp] = @

(45)
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In this case, the boundary bias is represented by Sgn [F(x) — %] [sD [g(x; D)] — %] and the

1
variance is represented by Var[g(x; D)] 2

The function designated by phi is the following (Duda et al., 2001):

o[t] = 1/@[00 e erf(%)] (46)
2 (v,
erf(u) = \/_Ejo e X dx (47)

The erf function that is used here is approximated by the following distributions.
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Figure 27. - erf function values (Duda et al., 2001)

Figure 28 shows the bias/variance decomposition in the framework of regression. The
rows in the figure represent different training datasets. Moving from left to right, the bias
decreases from columns a to b. In column a, the g(x) function is fixed and is a poor estimate of
the data, no matter which training set is used. Therefore, no matter what the true function F(x)
is, the function will remain fixed for each training set. In the last row, the bias is seen to be large
for the first column, as the estimate is very poor. The variance in this case is zero, and the overall

error loss function is completely dependent on the bias term. Column b is a slightly better
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estimate than column a, even though it is still fixed and has zero variance. Prior knowledge was
used to move this function closer to the true distribution of the data and thus the bias, and the
overall error, has been decreased. The model in Column C is a cubic model with coefficients that
can be trained and changed. The fit to the data is accurate and thus the bias is low. The model in
column d is linear but certain parameters, including the intercept and slope have been estimated
from the training data. It is not as flexible as the previous model due to the number of
parameters, but it is better than the first two models. Therefore the model has a larger bias than
the third model and a smaller bias than the first two models. However, due to its flexibility, this
model and the third model propagate error through their variance terms. Having prior
information, about the system being modeled and the mechanism that generates the data, that can
be fed into this flexibility will help decrease both the bias and the variance. Duda et al. explains,
We can virtually never get zero bias and zero variance; to do so would mean that there is
only one learning problem to be solved, in which case the answer is already known.

Furthermore, a large amount of training data will yield improved performance so long as
the model is sufficiently general to represent the target function (Duda et al., 2001).
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Figure 28. - Regression Bias and Variance (Duda et al., 2001)

In contrast with the regression situation for bias/variance, the classification situation
yields a different generalization for the propagation of the two types of error that will be entered
in a loss function. In this case, for a two-class problem, samples are drawn from multivariate
Gaussian distributions with two different covariance matrices and means. By considering the
representation of the covariance matrices, the factor that is being changed across columns, with
the left column being the lowest biased distribution representation with off-diagonal covariances,
as this full covariance matrix can better estimate the distribution of the classes, while the middle
column has zeroed covariances, and the rightmost column has identity covariance matrices,
which is the least flexible, and thus highest biased, the relationship between bias and variance in
a classification context can be studied. Each row represents instances of the dataset that come

from the truth distributions seen on top of the figure. Maximume-likelihood estimation was used
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to estimate the parameters and thus separate the classes for a few data points from each class,
with the resulting classifiers shown by the dashed lines. Duda et al. explains,

Notice that most feature points in the high-bias cases retain their classification, regardless

of the particular training set (i.e., such models have low variance), whereas the

classification of a much larger range of points varies in the low-bias case (i.e. there is
high variance). While in general a lower bias comes at the expense of higher variance, the

relationship is nonlinear and multiplicative (Duda et al., 2001).

Therefore, the regression situation is not exactly the same as the classification situation for
decomposition.

The bottom of the figure shows three density plots that correspond with the different
decision boundaries that are developed for many training sets. The gray noisy representation in
the leftmost plot shows that there is a high variance in where those decision boundaries are
drawn, while for the highest biased situation, the variance is low as the middle of the plot is more
dense and black. The average of all of these decision boundaries in the left plot represents the
most accurate representation of the true decision boundary, as the bias is low, and this fact is
represented by the error histograms seen below. The rightmost plot average boundary would
have a larger error, as there is a larger bias from the true boundary, and the error histogram is
more peaked than the other two. In order to optimize the bias and variance in a classification
context, there must be an adequate amount of data in a training set, which would shrink the
amount of error for the given bias, and the number of parameters in the model must be adequate
enough to have a good resolution. Duda explains,

If a model is rich enough to express the optimal decision boundary, its error distribution

for the large n case (with decreased variance) will approach a delta function at E = Ep,

which is the Bayes error. To achieve the desired low generalization error it is more
important to have low variance than to have low bias. The only way to get the ideal of

zero bias and zero variance is to know the true model ahead of time, in which case no
learning was needed anyway (Duda et al., 2001).
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When n is increased in this case, in order to determine a classifier, more parameters need to be
estimated for the model, which would by default decrease the bias. Prior knowledge must be

used to find this adequate representation of the model, just like in the regression case.
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Figure 29. - Classification Bias and Variance (Duda et al., 2001)
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I11. Methodology

Overview

The main thrust of this research effort is the fusion of different responses of interest with
the input of Subject Matter Expertise using the hierarchical framework and ideas of Value
Focused Thinking. This fusion of responses will be used to compare algorithms of similar
assumptions and of similar computational complexity. While the amounts of responses and the
types of responses can be manipulated from study to study, this framework can be used as a
baseline methodology that can be used for further research in the realm of HSI data. This will
provide a large benefit over the current, disjoint methodology of comparison, which includes
comparisons via parametric and nonparametric tests that incrementally exhibit the benefit of the
new algorithm or the incremental changes in the algorithms over the previous ones.

The research effort is divided into three main components. The first component is the
application and utilization of the Value Focused Thinking Ten-Step Process to the problem of the
quality of a hyperspectral anomaly detector in various settings. The second and third components
are experiments that include the exercise of the completed hierarchy for the analysis and
comparison of different algorithms and imaging data sets. The first experiment is a comparison
of three basic supervised algorithms on a series of synthetically permutated images in order to
verify the performance of the hierarchical response. The second experiment is focused on using
the lessons learned in the first experiment and applying them to hyperspectral image data to
understand whether the same results would hold up and the same alternative would be chosen

under this different assumption of the level of data.
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Value Focused Thinking

The Value-Focused Thinking 10-Step Process was utilized to structure the responses that are of
interest in a supervised classification context, and then ultimately in an HSI modeling situation,
in order to choose the best alternative from a set of algorithms. This type of analysis allows the
analyst to make decisions that are founded on logic and can be repeated for future research or
applied to different alternatives. It also is a very transparent process that can be easily

communicated and understood by Decision Makers and other analysts.

Step 1: Problem
Identification

+ Value-Focused Thinking

Step 2: Create Value
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Figure 30. - VFT 10-Step Process (Shoviak, 2001)

An overview of the VFT process is as follows:

Step 1: Problem Identification

The first step in the VFT process is to fully understand the breadth and scope of the
problem, in order to shrink the decision space to the context of interest. This problem definition

helps make the decision process transparent, and it allows all of the participants a clear
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understanding of what is expected. This includes defining a clear and impactful vision statement,
an idea about the perspective of the problem, and the overall scope of the issue and what needs to
be solved.

Step 2: Creating the Value Hierarchy

The value hierarchy is one of the main innovations and the structural backbone of the
VFT process. It is the goal of the analyst to create a hierarchy that spans the decision space but
also divides it independently. Therefore, it must be collectively exhaustive and mutually
exclusive. These two properties ensure that the hierarchy is weighted correctly and precisely.
The two main methods of developing this hierarchy are the top-down approach, which
decomposes the problem into its values and objectives, and ultimately its measurements, and the
bottom-up approach, which uses an exhaustive list of responses and the analyst attempts to
combine them logically in groups that explain their merit. This is the approach that is done in this
research. Value Hierarchies in this research were developed using Dr. Jeffery Weir’s Value
Hierachy Excel Spreadsheet macro.

Step 3: Developing Evaluation Measures

The measures of the hierarchy represent the lowest row of the hierarchy that feed into the
values. These measures are the ultimate objective measurements that must be empirically
collected from the system or process that is under review. In the lexicon of VFT, each individual
row of the hierarchy is known as a tier, and each of the groups of values and measures is known
as a branch. These measures can be constructed from latent variables or can be directly
interpretable from real-world phenomena. The dividing terms of measures are directly

measurable, measured by proxy, on either a natural or constructed scale. The main goal is to
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accurately describe the objective attainment of the value the measure is feeding into. The

following is a list of the types of measures used in VFT.

Table 6. - Types of Measures used in VFT

Types of Measures Definition
Matural Scale readily interpretable and in use
Constructed Developed for a specific problem to measure attainment of objective
Direct Directly measures degree of reaching the objective
Proxy Does not directly measure degree of attainment, only shows correlation

Step 4: Creating Value Functions

After the creation and determination of measures for attainment of each specific value,
value functions must be created for assessing the relative importance of the levels within the
measures. Depending on the measurement system for the measures and the type of data that is
collected for that measure, the value functions can either be categorical or continuous. These
value functions are functions that transform the empirical data into utility measurements that are
of importance to the Decision Maker. Therefore, the DM must be interviewed to assess their
preferences and their risk biases and these functions must be monotonically increasing from 0 to
1 (Kirkwood, 1997). If this monotonic requirement were violated, utility preferences would be

ambiguous, and it would be difficult to optimize the value measure to the best possible measure.
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Figure 31. - Categorical and Continuous Value Functions
Step 5: Weighting the Value Hierarchy

After the development of the value functions, the individual values and measures must be
weighed to enumerate their importance within the hierarchy. These should reflect the level that
the measures help determine the actual value and each value weight should be reflective of how
likely these values would lead to the overall determination of the alternative preference. Two
different frameworks for calculating the weights can be used, local weighting and global
weighting. The local weight of a value is the measure of importance for reaching the value in the
tier directly above it. Global weighting is the overall importance of that value within the
hierarchy, and these values can be analyzed to see if the ranking of values are slightly wrong or
should be updated. Within the construct of local weighting, the weights that feed into the same
node need to add up to one. It is an easy conversion to go from local to global weighting, as all
of the local weightings along a branch should be multiplied together to calculate the global
weight.

Step 6: Generating Alternatives

The generation of alternatives is an important step to the process and must be carried out

repeatedly parallel to the main value hierarchy process. There are many ways to generate
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alternatives from the values within the hierarchy and VFT allows a group the opportunity to both
synthesize new alternatives and throw some out due to infeasibility or domination by other
alternatives. If one alternative does not perform as well as another in all categories, it is
considered to be dominated by that alternative. More information about generating alternatives
has been covered in Chapter II.

Step 7: Scoring Alternatives

After the generation of feasible alternatives comes the calculation of the overall VFT
value using the measures and value functions used within the hierarchy. For this research, after
all response variables have been collected, they will be input into the hierarchy for each specific
alternative. The output of the VFT value will be used to rank alternatives and assess their
feasibility. A large amount of deliberation could be necessary in order to decide where each of
the alternatives falls along the measure distributions.

Step 8: Deterministic Analysis

Deterministic Analysis stems from the scoring of the alternatives in Step 7. This is the
combination of all of the alternative scores into one measure by taking the score of the individual
evaluation measure one at a time and multiplying it by the global weight associated with that
score. These are then added together to get the overall value for an alternative. It is a linear
combination of global weight of the measure score and the actual score at the measure. This final
measure can be compared against other factors outside of the hierarchy to see different
relationships between alternatives and possibly generate other, new ideas for alternatives.

Step 9: Sensitivity Analysis

Sensitivity analysis is used to change the fundamental assumptions that are used in the

model, such as the value functions and weightings, and see how the overall decision would
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change for these tweaks of the model. This could show that the alternative choice is not
generalized for all possible realities but only to the specific construct of the model. This is a type
of meta-analysis that can both show the specificity of the choice in alternatives, and thus the
robustness of that choice to random events that could change the weightings in the future, and it
could help analyze the strength of the hierarchy, as stronger hierarchies should be more robust to
slight changes. This is akin to the variance that occurs when a model fits to different training
datasets. This step is useful in the Air Force, as often times, new leaders step into positions over
analysts, and preferences for an alternative should be robust enough to fit nicely with those new
DMs.

Step 10: Conclusions and Recommendations

This step is a communications and presentation based step that relies heavily on the
ability to interpret and argue for the results of the analysis. These results are presented by the
analyst to the Decision Maker, but should not be considered as the end-all answer to the problem.
The Decision Maker should interface with the analyst in order to weight the alternatives against
additional exogenous factors, such as cost and often time to complete these alternatives. At this
step, other alternatives may be formulated using comparisons with similar already assessed

alternatives (McGee, 2003).

VFT Hierarchy

Figure 32 is a representation of the Value-Focused Thinking Hierarchy that is used in this
analysis. This hierarchy is utilized in order to provide a decision maker the means for making a
valid, organized, though-out decision for choosing the correct classification algorithm that they
need in each particular instance. The hierarchy is broken down into levels of values which

constitute particular features that are of interest for the decision maker. These values can be
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broken down further into additional levels for a higher resolution of clarification or broken down
into measures that are objective measurements for certain variables that are estimated for the
classification algorithms. These measures constitute the most important and highest leverage
features of the algorithms that carry the most weight within the decision process. They also
provide an easily accessed and interpretable measurement system that can be assessed to
determine which features within the performance of the algorithm need to be improved or
leveled with other features. For each individual measure, there is a weighting that is used per the
subject matter experts opinion in order to provide subjective knowledge that helps judge the
classification algorithm appropriately. Additionally to the weighting, there are value functions
that determine the correct values that are assigned to each individual measurement’s
performance. The following VFT Hierarchy will be used in this research. Each branch will be

explained in further detail later in this chapter.
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Figure 32. - VFT Hierarchy
First Experimental Design
A set of two Multivariate normal sample populations were developed using random
draws from the Multivariate normal distribution using Matlab. Within each individual trial, the
two sample populations represented a set of Background pixels and Target pixels for a

hyperspectral imaging anomaly detection problem. For each pixel, a reflectance vector was
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simulated with the x-axis representing the reflectance within the first discretized wavelength, and
the y-axis representing the reflectance of the pixel within the second wavelength. These sample
background and target pixel populations were created by varying different factors and then
placed in a table in order to estimate and optimize the effects of each individual factor on
different response variables. Since this toy study is simulating the anomaly detection
methodology for a true HSI problem, the factors are representative for such a problem.
Experimental Factors

The first factor is the actual classifier that is used. These include the Quadratic
Discriminant Analysis classifier, the Classification Tree, and the Naive Bayes classifier. The
second factor is the Mahalanobis Distance factor, which represents the distance from the
centroids of the target distribution to the background distribution. This factor was divided into
Short and Long levels, with Short pertaining to distances less than 5 and Long pertaining to
distances greater than 5. The second and third factors pertain to the Covariance matrices of the
target and background, respectively. The Target covariance matrices will result in distributions
that are most representative of targets in HSI data, making the distributions dense with less
variance than the background. The Background covariance matrix makes the distribution result
in a higher variance and less dense than the target. The angle that each distribution will face each
other is also varied using these matrices. The final factor is the Percentage of Target Pixels. This
factor is representative of the HSI image data, as targets are typically sparse in the data. The
levels of this factor are 1%, 5%, and 10% of the total number of pixels. These factors are seen in

the following table.
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Table 7. - Classification Algorithm Alternatives

Alternative Classification
Algorithms

Quadratic Discriminant Analysis
Naive Bayes Classification
Classification Trees

Table 8. - Factors used in Experiment

Target Background
Mahalanobis g kg- FPercentage of
i Cowvariance Covariance )
Distance i i Target Pixels
Matrix Matrix
Long =10 TCML BCM1 1%
Short <10 TCM2 BCM2 5%
TCM3 BCM3 10%

Figure 33 represents a sample problem of the Target distribution, in blue, and the Background
distribution, in red. As stated previously, the target distribution will have significantly less pixels
than the background distribution. The large black points in the figure represent the centroids of

the distributions, and the Mahalanobis distance will be calculated between these two centroids.
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Figure 33. - Target and Background Distributions

Three different Supervised Classification Algorithms were used, including Quadratic
Discriminant Analysis, Classification and Regression Trees, and Niave Bayes Classification. The
responses that were collected included Computational Time and Effort values, True Positive
Fraction (TPF), the False Positive Fraction (FPF), Sensitivity, Specificity, Accuracy, Precision
(depending on context), a TPF and FPF Bias error value, a TPF and FPF Variance error value, a
Domingos Classification Bias Error, a Domingos Classification Variance error, a k-fold Cross
Validation Error value, and a Jackknife Cross-Validation Error value. Additionally, the value
from the constructed Value Focused Thinking Hierarchy, after subjected to the value functions
and weightings, was recorded for each combination. These values were compared for each
specific classifier, and an overall value was computed by weighing the Hierarchy Values by the

number of pixels in the image, to assess contextual information.
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Classification Algorithms

The three classification algorithms used in this research are the Naive Bayes Classifier,
Classification Trees, and Quadratic Discriminant Analysis. These three algorithms were
discussed in detail in Chapter 2, and these three plots are meant as examples. The first plot is an
Example of the Naive Bayes Classifier, which uses posterior estimates of class assignments
based directly from prior distributions of probability estimates for each feature independently. It
assumes the features are independent and calculates probability contours using the pdfs for each
feature independently, which are computed around the centroid of the distribution. This can be

seen in Figure 34.

Naive Bayes Classifier — Toy Problem
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Figure 34. - Naive Bayes Classification

Figure 35 is a representation of the Classification Tree algorithm, which is comprised of
nodes in which a decision is made based on the feature and the values of that feature that would
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decrease the amount of information entropy the highest. Therefore, it divides the classification

space into orthogonal class regions based on splits of the features.

Figure 35. - Classification Tree Example

The final algorithm is the Quadratic Discriminant Classifier which utilizes the
Mahalanobis distance between the two class distributions and calculates the likelihood that the
point is either in one class or the other based on this distance. Therefore, the true covariance
matrix of the class distributions is an integral part of the equation for the likelihood of class
ownership. For various types of covariance matrices, which ultimately determine the shape of the
distribution, the discriminant boundary will be different conic sections. This type of analysis has
lower bias and higher variance than linear discriminant analysis, as the training sets that are used

will determine the shape and location of the discriminant functions.
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Quadratic Classification
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Figure 36. - Quadratic Discriminant Analysis
Mahalanobis Distance

The following is a representation of the difference between Euclidean distance and
Mahalanobis Distance. Euclidean distance around a mean in a multivariate distribution will be
measured from by the radius of the circle of equal distance that surrounds the centroid to the
point of interest. This is seen below. The main issue with this type of distance is that it does not
incorporate the covariance between the dimensions in the distribution, and thus, acts as if the
dimensions were independent. Therefore, to assess outliers, it cannot be determined that a point
in one dimensional direction could have a different actual distance from the mean than the other
direction, when accounting for the covariance. A point in the dimension with greater variability
will be interpreted as being far from the mean, even though it may still be in the distribution.
This is the naivety of the assumption of independence. The points A and B here are the same
Euclidean distance from the mean.
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Figure 37. - Euclidean Distance (Tomaselli et al., 2013)

Mahalanobis distance accounts for this issue of distance from the mean in various directions by
incorporating the covariance of the distribution within its calculation. Therefore, it does not
assume that each dimension is independent, and for a two-dimensional case, equidistant points
are now represented by ellipses with the axes corresponding to the variance in that direction.
This allows the detection of outliers in one direction that may have been interpreted as the same
distance when using the Euclidean definition. The points A and B here are the same Mahalanobis
distance from the mean. This type of distance dilation is used primarily in the RX algorithm and

its variants. The equation for Mahalanobis distance is the following (Tomaselli et al., 2013):

D (2, 18) =/ (x = 271 (x — )7 (48)
where
2~ 1 is the inverse Covariance Matrix of the data
u is the mean of the distribution

x is the point of interest.
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Figure 38. - Mahalanobis Distance (Tomaselli et al., 2013)

Experimental Measures/Responses for the VFT Hierarchy

Transitioning back to the VFT hierarchy methodology, Table 9 represents the values and

their associated responses for Computational Complexity and Classification Accuracy. Most of

the measurements are natural and direct, although the Ease of Use measurement uses a

constructed scale to define the level of triviality in the algorithm.

Table 9. - Measures for Computational Complexity and Classification Accuracy

Responses/Measures of Interest

Value Computational Complexity Classification Accuracy
Sub-value TPF/FPF Error/Accuracy Sensitivity/Specificity
Computational e e
Responses/Measures | Ease of Use Ti TPF FPF Error Accuracy | Sensitivity | Specificity
ime
Constructed, A Natural, Natual, Natural, Matural, Natural, | Matural,
Type i Matural, Direct . _ . . : .
Direct Direct Direct Direct Direct Direct Direct

The branch for Computational Complexity is divided into Ease of Use and Computation Time

measurements.
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Figure 39. - Computational Complexity Branch

The branch for the Classification Accuracy value is split into three “means objective values”,
which separate the use of the confusion matrix into three constituent parts (TPF/FPF Values,
Error/Accuracy Values, and Sensitivity/Specificity Values) depending on the application that the
analyst would like to work and deliver results to the Decision Maker in. This helps facilitate
conversation and decreases the noise when briefing superiors. Each of these means objective
values can be turned on or off and usually only one would be used in a typical application, as
there is no real need to compare each of the measurements. This branch can be seen in Figure 40.
The following graph depicts the confusion matrix for a two-class classification problem,

with the predicted number of positive, negative, and total classifications across the column space,

and the actual number of positive, negative, and total data points placed across the rows.

Table 10. - Confusion Matrix

Predicted
Positive |Megative |Total
Actual Positive [TP FMN p
MNegative |FP ™ n
Total o' n' N

87



Additional measures that can be assessed within a two-class classification problem are found in
the Table 11. They include an estimate of total error, accuracy, precision, and Sensitivity, which
is equal to the True Positive Fraction for a two-class classification problem, and Specificity,

which is the difference between unity and the False Positive Fraction.

Table 11. - Confusion Matrix Formulae

Name Formula
(total) error (EP+EN)/N
Accuracy (TP+TN)/N
FPF, false
positive FP/n
fraction
TPF, true
positive TR/p
fraction
Precision TP/p'
Recall TP/p |=TP fraction)
Sensitivity TP/p (=TPF)
Specificity TN/n (sTNF=1-FPF)

Table 12 is a representation of the typical Matlab output for the Confusion matrix. True
Positives (TP) are in the upper left element, while False Negatives (FN) are in the upper right

element. In the bottom left element are False Positives (FP) and in the bottom right are True

Negatives (TN).

Table 12. - Matlab Confusion Matrix Output

Predicted

Predicted Positive | Predicted Negative
Actual Positive 1435 5

Actual Megative 14 146

Actual
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The representation of the Classification Accuracy branch is seen below.

Classification
Accuracy

Values ErrorfAccuracy Specificity

Accuracy
Measure

Figure 40. - Classification Accuracy Branch

The Algorithmic Error value branch is split into Generalization Error and Loss Function
Decomposition Means Objective Values. The Generalization Error is computed using both K-
Fold Cross Validation Error, in which the K will be determined by quick preliminary testing, and
Jackknife Cross Validation Error, in which each point is held out as the test set and the rest of the
data is treated as training data to train the algorithm and predict that point. The amount of times
that the point is misclassified is integrated as the error. For the Loss Function Decomposition,
two types of decompositions were conducted, one based on posterior estimates of the TPF and
FPF values, using an MSE Quadratic loss function that is typical in regression, and thus it treats
the TPF and FPF value functions, along with the classifier, as part of the same function, which
can be represented on a continuous scale. For the classification loss of classifying each
individual point as target or background, Domingos’ unified decomposition for general loss

functions will be applied. This comparison of loss function performance is a novel approach
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taken in this research. Although there is some debate, | have determined that the Generalization

Errors and Variances are all Natural, Direct measures, while the Biases are all Natural, Proxy

measures, as the estimate of bias is in fact being used to determine the accuracy of the

classification system using a difference between the expected parameter value and the optimum

parameter value. This calculation of expected parameter value brings the measurement out of the

direct framework to the proxy framework. Variance, however, is directly determined by the

natural variation between the expected output and each individual output. These definitions are

largely notional in this case and other interpretations may suffice.

Table 13. - Measures for Algorithmic Error Response

Responses/Measures of Interest

Value

Algorithmic Error

Means Obj-Value

Generalization Error

Loss Function Decomposition

Sub-value TPF Loss FPF Loss Classification Loss
K-Fold Cross |Jackknife Cross o o
o o . . . FPF Classification | Classification
Responses/Measures | Validation Validation TPF Bias |TPF Variance | FPF Bias . . )
Variance Bias Variance
Error Error
Matural, . Matural, Matural, Matural, Matural, Matural, Matural,
Type ) Matural, Direct ) ) )
Direct Proxy Direct Proxy Direct Proxy Direct
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The following figure is a representation of the Algorithmic Error Branch.

Algorithmic
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Figure 41. - Algorithmic Error Branch

Bootstrapping

A hybrid Parametric/ Non-Parametric bootstrapping approach will be utilized to generate
results for the Loss Function Decomposition Means Objective Value. Parametric bootstrapping is
the process of simulating a new set of feature data from the empirical distribution of the feature
data and then using this simulated data to draw class or response data from the conditional
distribution of (¥|x) where y are the predicted classes for each data point in x. This is
demonstrated in Figure 42, as data is first used to fit a model, and then the fitted model is

sampled, with replacement, with new simulated data to generate a new estimate.
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Figure 42. - Parametric Bootstrapping (Shalizi, 2011)

Non-parametric bootstrapping includes the upfront resampling, with replacement, of both
the response values and the feature values. This in essence is treating the original set of data as if
it were a complete population, and each new sampled data set is just a sample from the overall
population, after which a parametric model can be applied to calculate a re-estimate of the
parameter of interest. The difference between these two formulations is just a matter of the
sequence of parameter estimation, with parametric bootstrapping having that estimation come

before the simulation of the data, and non-parametric having it come after (Shalizi, 2011).
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Figure 43. - Non-Parametric Bootstrapping (Shalizi, 2011)

There is an additional methodology for bootstrapping known as residual re-sampling that
holds fixed a deterministic function of feature input to class or response output and then adds the
residual value that accounts for the stochastic noise by resampling it, with replacement, from the
original conditional probability distribution. In this research, both the x and y values will be
resampled, which is also known as bootstrapping the indices. This allows the maximum
separation of the performance of the classification algorithm and associated confusion matrix

parameter of interest from the performance of the resampling methodology.

Cross-Validation
Cross-Validation will be utilized for the measurement of generalization error to different sets of
data. This process splits the original training set of data into different partitions in various ways.

K-fold Cross-Validation is a way of splitting the training set into “folds” by partitioning it into K
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different data sets. Each of these data sets will take turns as the test dataset in the classification.
The rest of the folds will be used as training sets to train the algorithm. Once trained, error will
be calculated by using this trained algorithm against the fold that is representing the test dataset.
This is done for each fold and then each of these errors of misclassification percentages is

averaged to calculate the measurement of error.

calculate
avg. error

Test set 4 iteraton —e calc, amor

Figure 44. - k-fold Cross-Validation (Raschka, 2015)

Jackknife Cross-Validation will also be used. This is similar to K-Fold Cross Validation, but now
the number of data points, n, is used as the number of folds, k. This means that each data point
will be used as a test dataset while all of the other data is used to train the algorithm. The

percentage of points misclassified will be used as the measure of error.
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HSI Data

The data that has been vetted in these experiments is from a program known as the
Hyperspectral MASINT Support to Military Operations program (HYMSMO) using the
Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor. This experiment is a
simulation of Airborne Reflective Emissive Spectrometer (ARES) and specifically are part of
the Forest Radiance | and Desert Radiance Il experiments. The HSI data is taken at 210 different
wavebands in the visible and IR ranges of the EM spectrum and the number of total pixels, target
pixels, and neighborhood pixels have been counted and recorded. VVarious numbers of targets are
present in each of the scenes and the target percentage of the percentage of number of target and
neighborhood pixels to total pixels is recorded. Some of these targets are synthetically placed
into the scenes. The actual images are displayed below. Images ARES1, ARES2, ARESS,
ARES2D, ARES2F, ARES3D_10k, and ARES3F are used in the first HSI experiment.

ARES1D, ARES1F, and ARES4F are used in the Validation experiment.

Table 14. - ARES Image Factors

Total Target |Meighborhood| Total Target
Image Bands ) ] ) Test
Pixels Pixels Pixels Targets |[Percentage
ARES1 210 26196 237 1] 6 0.00904718| Intital HSI
ARES2 210 185810 321 ] a8 0.01706539| Intital HSI
ARES3 210 16588 152 1] g 0.00916325| Intital HSI
ARES1D 210 57909 235 437 5] 0.01160441| Validation
ARES1F 210 30560 1007 973 10 0.06479058| Validation
ARES2D 210 22360 523 1942 46 0.1102415| Intital HSI
ARES2F 210 47424 307 1221 30 0.03221997| Intital HSI
ARES3D 10k 210 11024 157 112 4 0.02440131| Intital HSI
ARES3F 210 30736 145 314 20 0.01493363| Intital HSI
ARESAF 210 16400 109 339 29 0.02731707| Validation
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Figure 45. - ARES Images 1, 2, 3, 1D (Orloff et al., 2000)
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Figure 47. - ARES 3F, 4F (Orloff et al., 2000)

Factors for HSI Data Experiment

In order to make the VFT hierarchy values more representative to real world scenarios,
an experiment will be carried out using the same three algorithms as before but now on ARES

images. Principal Component Analysis will be used for Feature Extraction to reduce the number
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of features from the 210 bands in the images. The Supervised Classification Algorithms will then
be applied to the image data and the same responses will be collected as before, which will be
entered into the VFT hierarchy. A post-processing weighting will be used to determine the final
value that will determine which algorithm performed most satisfactorily, and thus, in VFT

parlance, is the best alternative.

Table 15. - HSI Data Experiment

Algorithm Images

Quadratic Discriminant Analysis | ARES1

Classification Trees ARES2

Maive Bayes ARES3

ARES2D

ARES2F
ARES2ZD _10

ARES3F

Application of Various Bias/Variance Frameworks for Classification

In this analysis, the goal is to compare and contrast various frameworks for the bias and
variance decomposition of a loss function in terms of Mean Squared Error and in the Zero-One
loss function for classification. The main sub-goal is to determine a optimum computation to
enter into the Value Focused Thinking methodology for comparing supervised classifiers.

There have been many formulations for the bias and variance decomposition of loss
functions in both regression and classification situations. Within the regression framework, the
Mean-Squared Error Composition works best as it is somewhat simple to breakdown the MSE
loss function in terms and bias and variance. In classification, it has been a bit more difficult and
many formulations have been postulated. These include Friedman’s formulation and

Domingos’ formulation (Friedman, 1997) (Domingos, 2000). An additional formulation for the
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True Positive and False Positive Fractions using the traditional decomposition of the quadratic
Mean Squared Error loss function has been developed herein. Matlab has been used on a few toy
situations to compare these bias/variance calculations for classification.

Conceptual Definitions

The idea of bias stems from the intuitive idea of accuracy of a classifier. Within a certain
data set, there is a target that must be reached in terms of fitting some parameter and having it
fall near a pre-specified value. This is akin to the situation of playing darts. The player has an
optimum target that they are reaching for, which in some cases is the bull’s-eye. The distance
that the player’s throw of the dart lands away from the bull’s-eye can be thought of as the bias in
the system of the thrower’s mechanics. In this sense, the bias is the error due to the difference
between the expected prediction and the correct value that is being approached. For one instance
of a training set and the resulting model analysis of the training set, only one distance is
calculated from the target. When multiple training sets, as in bootstrapping, are used to train the
model, the average distance is used away from the target. This target can either be comprised of
an a priori probability of the prediction of certain combinations of features in the feature matrix
or it can be some target that some estimation is attempting to approach. Such targets would
include 1 in terms of True Positive Fraction or 0 in terms of False Positive Fraction. The
randomness that is inherent in the data sets is what creates a range of predictions, making the
process stochastic in nature and not deterministic. If the same training set was used for each
replication, and the modeling algorithm had no random components, then the process would be
deterministic.

The idea of variance can be thought of as the precision of the distribution of model

estimates. In terms of the dart throwing example, the precision is how closely each throw of the
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dart lands from one another when considering some target that the thrower is attempting to hit. In
a classification setting, the algorithm will be trained on multiple training sets. When each unique
combination of feature variable values is used to estimate the class of the data point, the variance
arises in terms of how closely packed the estimated classes are. Since in a classification setting,
the zero-one loss function is used to determine if the correct class has been calculated, the
situation is slightly different from regression that has a continuous response variable, and thus an
idea of distance between estimations. However, in terms of the posterior probabilities that a
certain class has, the variance can be thought of as the precision between the different
probabilities. If one class is being predicted a lot more than another class, even though the prior
probabilities for those classes are close together, there would be large bias in that one case. If
there are large fluctuations for the posterior probabilities of the class estimations, then there
would be large variance for those points. For TPF and FPF, the idea is a bit more natural, as there
will be an idea of precision based on the variance of the fractions that are generated. If these
fractions change from training set to training set, the variance will be higher. Duda et al., states,

Given that there is no general best classifier unless the probability over the class of

problems is restricted, practitioners must be prepared to explore a number of methods or

models when solving any given classification problem. The bias measures the accuracy
or quality of the match: high bias implies a poor match. The variance measures the
precision or specificity of the match: a high variance implies a weak match (Duda et al.,

2001).

In terms of model fitting, there is a trade off of bias and variance due to the number of
parameters that are used in the model and the flexibility the model has for predicting the classes
of the unique feature space combinations. Domingos observed that both flexible learners with
complex representations of parameters and basic learners are both seen to perform well in certain

experiments, and sometimes these simple learners outperform the more complex ones. He states,

“In recent years the reason for this has become clear: predictive error has two components, and
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while more powerful learners reduce one (bias) they increase the other (variance). The optimal
point in this trade-off varies from application to application” (Domingos, 2000). Analysis must
be done in order to determine the optimum settings to trade off the probability of fitting each
point exactly, which would be the bias portion of the error, and the ability for the model to
generalize to other additional data sets, so it does not over-fit to one particular, unique data
representation. When bias is decreased, the model is more flexible, and can fit each future data
point well, however the variance will be increased, as that instance of the model will not be able
to fit other future data sets well. On the other hand, when variance is decreased, the expected
classification will have a larger discrepancy from the actual classification, but the model will
perform better on the whole when exposed to many different data sets. Duda et al. reveals,
“Designers can adjust the bias and variance of classifiers, but the important bias-variance relation
shows that the two terms are not independent; in fact, for a given mean-square error, they obey a
form of ‘conservation law’” (Duda et al., 2001).

Bias and Variance for Regression (and TPF/FPF Values)

The breakdown for bias and variance for regression is seen in the following formulae

(Kuncheva, 2004) (Duda et al., 2001):

ep[(g(x; D) = F(x))?] = (eplg(x; D) — F(x)D? + ep[(g(x; D) — ep[g(x; DID?] (49)

F(x) = E[y|x] (50)
bias? = (ep[g(x; D) — F(x)])? (51)
variance = gp[(g(x; D) — £p[g(x; D)])?] (52)

where
D is an instance of a training data set

g(x; D) is the model estimate of the specific x vector in the data set D
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This representation will be used in this research for an approximation of TPF and FPF values by
considering each D to be a bootstrapped sample from the original distribution of data. For TPF,
the F(x) value will be represented by the optimal value of 1, and for FPF, F (x) will be
represented by its optimal value, which is 0.

Domingos’ Formulation

Pedro Domingos redefined the bias/variance decomposition for an arbitrary loss function,
and showed that the decomposition specializes to the standard one for the squared-loss case, and
to one that is similar to the Kong and Dietterich decomposition for the zero-one function (Kong
et al.,1995). Domingos states that each of the previously published decompositions in the
literature for the zero-one loss function is flawed. He states,

None has a clear relationship to the original decomposition for squared loss. One source

of difficulty has been that the decomposition for squared-loss is purely additive (i.e.,

loss=bias+variance), but it has proved difficult to obtain the same result for zero-one loss

using definitions of bias and variance that have all the intuitively necessary properties.

Here we take the position that instead of forcing the bias-variance to be purely additive,

and defining bias and variance so as to make this happen, it is preferable to start with a

single consistent definition of bias and variance for all loss functions, and then investigate

how loss varies as a function of bias and variance in each case (Domingos, 2000).
Therefore, Domingos is attempting to flip the logic from trying to find bias and variance terms
that match up exactly with the MSE function to definitions that could be set up to yield various
types of loss functions. This is desirable since a bias-variance tradeoff issue exists in any form of
generalization problem, and thus if Domingos succeeds, he can apply this idea to any logically
sound loss function.

Domingos defines various definitions for different concepts that he uses to build his
unified decomposition. He applies the loss function L(t, y), where t is the true value for the

certain x vector prediction, and y is the actual prediction using the classifier function. The first

definition is for the concept of a main prediction.
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Definition 1- Main Prediction:

The main prediction for a loss function L and set of training sets D is

yr%D = argminy,ED [L(y’ y,)] (53)

Domingos states,
The expectation is taken with respect to the training sets in D, i.e., with respect to the
predictions y produced by learning on the training sets in D. Let Y be the multiset of these
predictions. (A specific prediction y will appear more than once in Y if it produced by
more than one training set) (Domingos, 2000).
Domingos explains the idea of main prediction as thus, “The main prediction is the y’ value
whose average loss relative to all the predictions in Y is at a minimum. It is the prediction that
“differs least” from all the predictions in Y according to L” (Domingos, 2000). In squared loss,
this is the mean of the predictions, in absolute loss, it is the median, and under the zero-one loss
it is the mode. It represents the “central tendency” of the learner. The next definition is for bias.
Definition 2- Bias:

The bias of a learner on an example x is B(x) = L(y*, ¥,,), Where y* is the optimal

prediction, and y,,, is the main prediction. This bias is the loss that is measured when the main
prediction is compared to the optimal prediction. The next definition is the variance.
Definition 3- Variance:
The variance of a learner on an example x is V(x) = Ep[L(ym, y)]. The variance is the
average loss that is measured by the actual predictions relative to the main prediction. For all
examples, the bias and variance can be averaged, and represented as E, [B(x)] and E, [V (x)].

The following definition is for noise.
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Definition 4- Noise:
The noise of an example x is N(x) = E.[L(t,y*)] This is the part of the loss that is
representative of the stochastic noise and is not dependent on the training set or learning

algorithm. For most loss functions, these three values can be combined in the following formula.

Ep[L(t,y)] = c1N(x) + B(x) + ¢,V (x) (54)

The ¢4, ¢, values are multiplicative factors that will be different for various loss functions.
For the quadratic loss function, this equation is valid as shown in the following theorem.
Theorem 1 — Squared Loss:

Equation 54 is valid for squared loss, with

c=c=1 (55)

y* = Et] (56)

Ym = Ep[y] (57)

Ep[(t — y)?] = E[(t — Ec[t])*]+(Ec[t] — Ep[y])? + Ep[(Ep[y] — ¥)?] (58)
Noise = E.[(t — E.[t])?] (59)

Bias? = (E.[t] — Ep[y])? (60)

Variance = Ep[(Ep[y] — ¥)?] (61)

Domingos’ explains that this definition can now be used for classification, “We now show that
the same decomposition applies to zero-one loss in two-class problems, with c, reflecting the fact
that on noisy examples the non-optimal prediction is the correct one, and c, reflecting that
variance increases error on biased examples but decreases it on biased ones” (Domingos, 2000).
This issue reflects the multiplicative issue that has been seen for other decompositions of the

zero-one loss function, in which the direction of the bias has an impact on how variance affects
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the error. For this theorem, P, (y = y™) is the probability over the training sets in D that the
learner predicts the optimal class for x.
Theorem 2 — Zero-One Loss:

Equation 54 is valid for zero-one loss in two-class problems, with:

¢ =2xP(y=y)—1 (62)
c, =1ify, =y, (63)
c, = —1 otherwise (64)

About the uniqueness of the variance function, Domingos states,

The fact that the variance is additive in unbiased examples but subtractive in biased ones

has significant consequences. If a learner is biased on an example, increasing variance

decreases loss. This behavior is markedly different from that of squared loss, but is

obtained with the same definitions of bias and variance, purely as a result of the different

properties of zero-one loss” (Domingos, 2000).
This means that there is a much higher tolerance for variance and it should be treated differently
in these classification situations. This is because the increase of average loss that is a product of
variance when dealing with unbiased samples is somewhat offset by the decrease when dealing
with biased samples. Additionally, the c; value leads to another difference between quadratic
loss and zero/one loss functions, in that in quadratic loss, the noise will always increase the
overall error, but in zero-one loss, when the predicted class is not the optimal class, increasing

the noise value actually decreases the overall error, and it is thus desirable to increase the noise

to make better predictions in these situations (Domingos, 2000).
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IV. Results and Analysis

Value Focused Thinking

The Value-Focused Thinking 10-Step Process was utilized as a methodology to select the best
algorithm out of a set of three alternatives spanning the field of pattern classification. This type
of analysis allows the analyst to make decisions that are founded on logic and can be repeated for
future research or applied to different alternatives. It can easily be modified for different
algorithms and different measures. It also is a very transparent process that can be easily
communicated and understood by Decision Makers and other analysts. The process, once again,

is shown below.

Step 1: Problem

Identification
e —— Value-Focused Thinking
“""1""* 10-Step Process
l Stap ¥ Develop ‘
Evaluation Measures
I
Step 4: Create
\faluoiinr.lims ] -f.'; | . 5"},‘9‘:
Step 5¢ Weght Value 'L‘\__ Model __l‘l_. S:::I:'::::\I
Hierarchy B
[ ‘
Step 6:
Alternative )
Generation |

Stap B: Step 10: Conclusions
Deterministic

—

B Recommendations
"

Step 7: Analysis .
Alternative
Soorng

Figure 48. - VFT 10-Step Process (Shoviak, 2001)
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Step 1: Problem Identification

The first step of the process is the scoping and understanding of the problem. In the
previous chapters, the HSI target detection problem has been well flushed out and this
understanding of the problem will be used for the formal analysis. Keeney states that developing
vision statements, perspectives, and delineating the scope of the problem will allow the analyst to
keep an eye on the values within the system. These three items are seen below.

B Vision statement: Be able to effectively detect target from background pixels using
classification algorithms to provide the most accurate and useful information to a

decision maker in a timely manner.

B Perspective: The perspective that will assess the accuracy and usefulness of the detector
will be an interested decision maker that has a stake in target detection. This will vary per
situation. SMEs will ultimately let me know if the parameters and the certain type of

detector is useful per the situation.

B Scope: This research focuses on a few types of detecting methodologies. The problem
will be analyzed the problem in terms of variance and bias reduction for regression
and classification, usefulness for the user, and classification accuracy in different

frameworks.
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Step 2: Creating the Value Hierarchy

As observed previously, a hierarchy was developed that encapsulates both the values and
measures of interest in this study. The hierarchy would then be weighed for each individual
image per the three classifiers and combined using a weighting. This methodology is seen below.
The weighting is reflective of the contextual information that is seen in the image. This is akin to
ranking the images per the situation or the criticality in the scenario, which often happens during

real target detection situations.

D

00 : w, 166
,,,,339999@9 / - eeeeeeee
&4 image, eeeel

eeeeeeea | o, : Weight
image, 9999|

Figure 49. - VFT Image Weighting Process

A quicker way to accomplish this process is to take the medians of the values for certain factor
combinations. This decreases the size of the problem, as it folds over on the images and only
provides an output for a certain factor combination. In this study, the target pixel percentage and
Mahalanobis distance levels were used to generate median image values and then were put

through the hierarchy.
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Step 3: Developing Evaluation Measures

The SME had told me to rank the TPF Measure higher than the FPF measure, but the
sensitivity of the FPF measure and the accuracy and precision of its calculation was of a higher
concern. This is why, paradoxically, the TPF Measure is weighted larger than the FPF measure,
but the FPF Bias and Variance are weighted larger than the TPF Bias and Variance. This makes
sense in the HSI setting as groups of pixels that are labeled falsely as targets will only appear in
certain images taken of the same area and thus, there is an inherent bias/variance of the existence

of a False Positive in the image. By keeping this value as low as possible, the FPF measure

should also be held as low as possible.

Step 4: Creating Value Functions

Value functions were created with the use of SME input. These are shown below as well

as in Appendix A.
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Figure 50. - Ease of Use Value Function
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Figure 51. - Computation Time Value Function

Step 5: Weighting the Value Hierarchy

The hierarchy was weighted both globally and locally using a by branch and tier
weighting that allowed the decision maker to provide input to what value or measure was more
important across only a few values and measures. Figures 52 to 57 show the Global and Local

weightings for each branch of the hierarchy.

Computational
Complexity
0.200
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Ease of Use .
Time
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Figure 52. - Global Weights - Computational Complexity
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Figure 53. - Global Weights - Classification Accuracy
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Figure 54. - Global Weights - Algorithmic Error
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Figure 57. - Local Weights - Algorithmic Error

These weights were then ordered and analyzed to understand if any weights were out of
proportion with the other values or measures in terms of importance. These weights would then
need to be reweighed which is not a difficult process. The weights that were determined in this
case were reflective of the importance of all of the variables involved. These can be seen below.
The following table features the local and global weights for the values. Global weights can be

derived from local weights by multiplying down branches.
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Table 16. - Local and Global Weights for Values

Value Tier |Local Weight [Global Weight
Performance 1 1 1
Computational Complexity 2 0.2 0.2
Classification Accuracy 2 0.3 0.3
TPF/FPF Values 3 0.3 0.3
Error/Accuracy 3 0 0
Sensitivity/Specificity 3 0 ]
Algorithmic Error 2 0.5 0.5
Generalization Error 3 0.4 0.2
Loss Function Decomposition 3 0.6 0.3
TPF Loss 4 0.3 0.09
FPF Loss 4 0.5 0.15
Classification Loss 4 0.2 0.06

The measures were also weighted with the same local and global weighting procedure. The most
weight has been placed on the TPF measure while the least weight is placed on the classification
bias and variance, as they are fairly new procedures with a large amount of uncertainty. The

weights can be changed as more insight is developed.

Table 17. - Local and Global Measure Weights

Measure Local Weight |Global Weight
Ease of Use 0.3 0.06
Computation Time 0.7 0.14
TPF Measure 0.7 0.21
FPF Measure 0.3 0.09
Error Measure 0.3 0
Accuracy Measure 0.7 0
Sensitivity Measure 0.7 0
Specificity Measure 0.3 0
K-Fold Cross Validation Error 0.667 0.133
Jackknife Cross Validation Error 0.333 0.067
TPF Bias 0.6 0.054
TPF Variance 0.4 0.036
FPF Bias 0.6 (.09
FPF Variance 0.4 0.06
Classification Bias 0.4 0.024
Classification Variance 0.6 0.036
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The following table shows the global weights and their rank per the tier for the values. This table
is in order of overall global weight. It shows the fact that algorithmic error is weighted the

highest amongst the three main branches.

Table 18. - Global Tier Rankings

Value Tier Global Weight |Rank (Tier)
Performance 1 1 1
Algorithmic Error 2 0.5 1
Classification Accuracy 2 0.3 2
TPF/FPF Values 3 0.3 1
Loss Function Decomposition 3 0.3 2
Computational Complexity 2 0.2 3
Generalization Error 3 0.2 3
FPF Loss 4 0.15 1
TPF Loss 4 0.09 2
Classification Loss 4 0.06 3
Error/Accuracy 3 0| NA

Sensitivity/Specificity 3 O|NA

The next table shows the ranks of the measures in terms of global weights. The TPF measure is
weighted the highest as it is representative of the main goal of target detection, that of actually
detecting targets when the pixels are indeed targets. The classification variance and bias are
ranked on the bottom, as they are experimental techniques that need to be assessed. The color

scheme is seen in the following table.
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Table 19. - Global Measure Rankings

Measure Global Weight |Rank
TPF Measure 0.21 1
Computation Time 0.14 2
K-Fold Cross Validation Error 0.133 3
FPF Measure 0.09 a
FPF Bias 0.09 a
Jackknife Cross Validation Error 0.067 6
Ease of Use 0.06 7
FPF Variance 0.06 7
TPF Bias 0.054 9
TPF Variance 0.036 10
Classification Variance 0.036 10
Classification Bias 0.024 12
Error Measure O|NA
Accuracy Measure O|NA
Sensitivity Measure O|NA
Specificity Measure O|NA

Table 20. - Color Representation in Tables

Value Color
Computational Complexity |Blue
Classification Accuracy Green
Algorithmic Error Yellow

Step 6: Generating Alternatives

As previously covered, alternative classification algorithms, QDA, Naive Bayes, and
CART were chosen to be representative of the whole of pattern classification research. Other
algorithms could be chosen with different parameters as needed.

Step 7: Scoring Alternatives

Alternatives were scored using the measures and methods seen in the previous
methodology chapter. In this case, the median of the factor combinations were used to assess the
alternative score. Various different tactical decisions had to be made when scoring the

alternatives and generating the actual value for the measures. These included removing certain
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data runs due to their inability to be classified well by the classifiers. Some of the points with
large Mahalanobis distances are uninteresting problems and can be discarded as any of the
classifiers can arbitrarily classify them well. This idea can be seen the following matrix plot of
the biases and variances that were generated. As the Mahalanobis distance increased, the bias
and variance shrinks to zero, as the classifier will always classify the problem well. There is a

cutoff at around 10 where the bias and variance reach a level that is effectively small.

Matrix Plot of QDA Bias and Variance for TPF/FPF
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Figure 58. - TPF/FPF Bias/Variance vs. Mahalanobis Distance

Additionally, when assessing the Misclassification Rate across various folds of the k-fold
Cross Validation methodology, it was of interest to see which fold number would result in the
lowest MCR rate. These MCR rates were calculated for different target pixel percentage levels
(1%, 5%, 10%), which was a significant factor. The 1% level resulted in the lowest MCR rate. It
was determined that there was no significant difference across the folds, and the lowest amount

of folds necessary can be used in this scenario. The default of 10 could also be used.

117



Interval Plot of MCR
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Figure 59. - Misclassification Rate vs. Target Pixel Percentage and Fold Number

An assessment of the jackknife MCR was also accomplished for the three different
classifiers. Figure 60 shows the MCR rates for each image from 0 to 243. It was seen that as the

number of target pixels increased, the MCR rate also increased. This happened across all of the

algorithms.
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Figure 60. - Jackknife Misclassification Rates
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Other tactical decisions that had to be made were the size of the tree and where to prune the tree
and the methodology to prune the tree in order to avoid over-fitting. This was assessed for MCR

at level of trees and at minimum leaf node sizes.

Scatterplot of TPF, FPF vs Levels
1 2 3 4 56 7 8 910
TPF*Levels FPF*Levels

0.9978 4 0.09 4
0.9977 4

0.9976 - ol
0.9975 4
0.9974 4

0.07 1
0.9973 4
0.9972 4

0.9971 { 0.06 1
0.9970 4

0.9969 4 - 0.05

12 3 4 5 6 7 8 910
Figure 61. - TPF, FPF vs Pruning Level
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Figure 62. - TPF, FPF vs. Leaf Size
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A pruning level of five was chosen to be adequate to avoid over-fitting.

In order to collect the biases and variances using Domingos’ formulation, a parametric
bootstrapping technique was accomplished. This fit the overall run distributions with the
parametric classifier first and then this fit was tested with random generations of data from the
same distributions that were used in the first fit. The fit using these random points, which
represent different instances of sample reality from an underlying true population, were then

tested on a grid of points. This idea is seen below.
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Figure 63. - Domingos Bias/Variance Methodology
New fits of these sample truths were then created and the differences for each of these data

points from each truth was used to determine bias and variance. This was then integrated across

all points in the grid in order to get a result for the bias and variance.
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Figure 64. - Domingos' Boundary Error

The overall scoring of the alternatives for the computational complexity measures is seen in

Table 21 and Figure 65. CART had the fastest times while QDA had the slowest.

Table 21. - Computational Complexity Measures

) ) ) Computation
Algorithm| Mdist Pix Pct Ease of Use i
Time

QDA Long 1% Somewhat Easy 0.017981996
CART Long 1% Reasonable 0.001500333
NB Long 1% Somewhat Easy 0.011519248
QDA Short 1% Somewhat Easy 0.017981601
CART Short 1% Reasonable 0.001904873
MNB Short 1% Somewhat Easy 0.012695926
QDA Long 5% Somewhat Easy 0.017977259
CART Long 5% Reasonable 0.00150507
MNB Long 5% Somewhat Easy 0.011639659
QDA Short 5% Somewhat Easy 0.017976469
CART Short 5% Reasonable 0.001906452
NB Short 5% Somewhat Easy 0.014577308
QDA Long 10% Somewhat Easy 0.01798476
CART Long 10% Reasonable 0.001911579
NE Long 10% Somewhat Easy 0.011722171
QDA Short 10% Somewhat Easy 0.017996998
CART Short 10% Reasonable 0.001919875
NE Short 10% Somewhat Easy 0.0149597959
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Computation Time Comparison
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The values for the measures for classification are shown in Table 22 and a comparison of FPF
Measures is shown in Figure 66. For the Long level of the Mahalanobis Distance factor, each

algorithm resulted in O FPF. For the Short level, QDA outperformed CART at the 1% and 10%

Figure 65. - Computation Time Comparion

levels. Naive Bayes resulted in an improvement at the 1% and 5% levels.

Table 22. - Classification Accuracy Measures

; ) ) TPF FPF Error Accuracy | Sensitivity | Specificity
Algorithm | Mdist Pix Pct
Measure | Measure | Measure | Measure Measure Measure
QDA Long 1% 1 0 1 0 1 1
CART Long 1% 1 0 1 0 1 1
NB Long 1% 1 0 1 1] 1 1
QDA Short 1% 0.9971591 0.3125 0.995 0.005 0.99715909 0.6875
CART Short 1% 0.9971591 | 0.40625 | 0.9934375 | 0.0065625 | 0.99715909 0.59375
NB Short 1% 0.9993687 | 0.21875 0.996875 | 0.003125 | 0.99936869 0.78125
QDA Long 5% 1 0 1 0 1 1
CART Long 5% 1 ] 1 0 1 1
NB Long 5% 1 0 1 0 1 1
QDA Short 5% 0.9888158 0.15 0.98375 0.01625 | 0.98881579 0.85
CART Short 5% 0.9914474 0.15 0.98 0.02 0.99144737 0.85
NB Short 5% 0.9953947 0.0625 0.986875 | 0.013125 | 0.99539474 0.9375
QDA Long 10% 1 0 1 0 1 1
CART Long 10% 1 0 1 0 1 1
NB Long 10% 1 0 1 0 1 1
QDA Short 10% 0.9871528 | 0.09375 0.978125 | 0.021875 |0.98715278 | 0.90625
CART Short 10% 0.9829861 0.1125 0.9746875 | 0.0253125 | 0.98298611 0.8875
NB Short 10% 0.9892361 | 0.096875 0.97625 0.02375 | 0.98923611 | 0.903125
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FPF Measure Comparison
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Figure 66. - FPF Measure Comparison

The algorithmic error measure values are shown in Table 23 and the K-fold and Jackknife Cross-
Validation error measures are shown in Figures 67 and 68 respectively. CART outperformed

both NB and QDA in both measures. Jackknife resulted in slightly less error than k-fold.

Table 23. - Algorithmic Error Measures

Jackknife ) )
K-fold Cross Domingos Domingos
Algorithm Mdist Pix Pct Validation :'T‘ros? TPF Bias T_PF FPF Bias F_PF Classification | Classification
— Validation Variance Variance — N
Error
QDA Long 1% 0 0 0 0 0 0 0.014 0.00381
CART Long 1% 0.00125 0.00125 0 0 0.006142 | 0.0000729 0.016 0.00322
MB Long 1% 0.0009375 0.000625 -6.3E-07 | 3.94E-10 | 0.00025 | 0.0001249 0 0.00926
QDA Short 1% 0.0065625 0.00625 -0.0024 | 2.05E-06 |0.277979 | 0.0160991 0.01 0.00234
CART Short 1% 0.0034375 0.00375 -0.00035 | 5.175E-07 | 0.063544 | 0.0014403 0.0085 0.00237
MNB Short 1% 0.0090625 0.00875 -0.00082 | 6.71E-07 |0.100434 | 0.008792 o 0.00133
QDA Long 5% o o o o o 0 0.016 0.00443
CART Long 5% 0.00125 0.00125 o o 0.006348 | 0.0000289 0.02 0.00323
MB Long 5% 0.00125 0.00125 o o 0.000319 | 6.79E-06 o 0.01299
QDA Short 5% 0.0175 0.016875 -0.0106 | 8.47E-06 |0.146768 | 0.0015322 0.016 0.00358
CART Short 5% 0.00125 0.001875 ] ] 0.082656 | 0.000393 0.014 0.00168
MNB Short 5% 0.025625 0.0225 -0.0084 | 0.0000303 | 0.098892 | 0.0062064 0.001 0.00852
QDA Long 10% 0 0 0 0 0 0 0.016 0.004
CART Long 10% 0.0025 0.0025 -0.0011 | 7.225E-07 | 0.011727 | 0.0000663 0.02 0.00418
MB Long 10% 0.0009375 0.00125 o o 0.00071 | 7.26E-06 o 0.01425
QDA Short 10% 0.021875 0.021875 -0.01242 | 9.26E-06 |0.093111 | 0.0004688 0.0195 0.00275
CART Short 10% 0.00125 0.00125 o o 0.020887 | 0.0002702 0.0205 0.00244
MB Short 10% 0.0321875 0.029375 -0.01281 | 0.0000556 | 0.097616 | 0.0020594 0.0025 0.00073
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K-fold Cross Validation Error Comparison
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Figure 67. - K-fold Cross Validation Error Comparison
Jackknife Cross Validation Error Comparison
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Figure 68. - Jackknife Cross Validation Error Comparison
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TPF Bias/Variance comparisons are shown in Figure 69 and FPF Bias/Variance comparisons are
shown in Figure 70. Again, values are split for both Mahalanobis distance and target percentage
factors. CART performs well in each of these measures. QDA performs well for TPF Variance
but maintains some bias. NB is shown to have variance at the 5% and 10% levels and also
maintains bias at these levels. The variance values are shown to be very small and could be

operationally insignificant.

TPF Bias, TPF Variance Comparison
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Figure 69. - TPF Bias/Variance Comparison

For FPF Bias and Variance, NB has a consistent bias across each short level at around 0.1 while
QDA has a relatively large bias at the 1% target pixel percentage level. QDA performs well for
5% and 10% but has a large variance for 1%. This could be due to the QDA algorithm predicting
close to all positives when there are less target pixels present. CART still is shown as the best

option in these cases. The FPF Variance is larger in value than the TPF Variance.

125



FPF Bias, FPF Variance Comparison
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Figure 70. - FPF Bias/Variance Comparison

The Domingos’ Bias/Variance comparison is shown in Figure 71. This methodology shows that
NB is the best performing algorithm and CART now is shown to have bias. Interestingly, the
long Mahalanobis distances are now registering positive biases and variances, which could be
due to the non-parametric bootstrap approach. Also, CART performs the worst in this situation in
terms of bias, which could mean that each tree that is being built is resulting in different
decisions for the border pixels. NB has more variance than the other two algorithms, even though
it has the least bias. This seems to show that NB is adept to fitting fairly accurate decision
boundaries, but they change from situation to situation at a higher rate than the other algorithms.

The Domingos’ variance is similar to the variance observed for the FPF values.
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Domingos BiasfVariance Comparion
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Figure 71. - Domingos' Bias/Variance Comparison

A listing of results for the comparison of Domingos’ Bias/Variance values to TPF and FPF bias
and variance values for all image cases are shown in Appendix B. FPF bias is always the highest
amount of bias observed for each algorithm. This is due to some runs being classified as all
background when the target percentage or Mahalanobis distance is small, which results in higher
FPF values. The Domingos’ variance values seem to be larger than either TPF or FPF values
when accounting for all of the runs, which is not apparent when simply looking at the median
values.

Step 8: Deterministic Analysis

All of the algorithms were ranked per the pixel percentage and the Mahalanobis
distances. It was seen that CART always outperforms the other algorithms in each situation,
although there is a dropoff in performance from long to short distance. QDA is always the worst
performing algorithm, primarily due to its generalizability capability (although in all of the
examples, the distributions had positive covariances). The analysis in the previous step showed
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why QDA performed at a lower level than the other algorithms, especially in computation time,

FPF Variance, and TPF Bias.

Table 24. - Aggregated Hierarchy Values

Algorithm Mdist Pix Pct | Hierarchy
QDA Long 1% 0.848
CART Long 1% 0.919

NB Long 1% 0.87
QDA Short 1% 0.57
CART Short 1% 0.756

NE Short 1% 0.662
QDA Long 5% 0.843
CART Long 5% 0.915

NB Long 5% 0.864
QDA Short 5% 0.537
CART Short 5% 0.738

NB Short 5% 0.591
QDA Long 10% 0.845
CART Long 10% 0.903

NB Long 10% 0.863
QDA Short 10% 0.56
CART Short 10% 0.72

NB Short 10% 0.564

Figure 72 shows the significant difference between long and short Mahalanobis distance levels

and the fact that CART is outperforming the other two algorithms in each case.
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Figure 72. - Hierarchy Values per Target Pixel Percentage and Mahalanobis Distance
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The following figures are breakdowns of the value quantities for each algorithm in each different
factor combination. They are useful for visualizing the areas that the algorithms outperform the
others in. For example, for the first case of 1% Target Pixels and Short Mahalanobis distance,
CART outperforms the other two algorithms in computation time, while NB outperforms the
others in TPF measure. Additionally, QDA performs poorly in this case in terms of FPF bias
which is driving the overall hierarchy value down. Also, CART is the only algorithm to show a
value for FPF variance, which adds to its quality. Therefore, the largest discriminators are
computation time, FPF bias, and FPF variance. If these measures are disproportionally affecting
the value of the algorithm, the DM may decide to change the weight or value functions

associated with the particular measures.
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Figure 73. - Hierarchy Values for 1% Target Pixel Pct and Short Mahalanobis Dist
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Figures 74 through 78 show a similar breakdown of the value scores for each particular measure.
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Figure 74. - Hierarchy Values for 1% Target Pixel Pct and Long Mahalanobis Dist
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Figure 75. - Hierarchy Values for 5% Target Pixel Pct and Short Mahalanobis Dist
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Figure 76. - Hierarchy Values for 5% Target Pixel Pct and Long Mahalanobis Dist
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Figure 77. - Hierarchy Values for 10% Target Pixel Pct and Short Mahalanobis Dist
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Figure 78. - Hierarchy Values for 10% Target Pixel Pct and Long Mahalanobis Dist

Step 9: Sensitivity Analysis
Sensitivity analysis was accomplished for the algorithms and it was seen that most of the

measures were robust. This is seen below as CART is always the best across all ranks.

Local Sensitivity Analysis for Classification Bias

Figure 79. - Classification Bias Local Sensitivity Analysis
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Step 10: Conclusions and Recommendations
From this methodology, it is obvious that CART performs the best. However, this is most
likely due to the difficulty of the problem and the separation that CART can create between

classes.
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V. Conclusions

This research is a look into a more robust, transparent, and informative methodology for
comparing the performance of pattern classification and hyperspectral imaging algorithms to
gain insight about how each algorithm performs under certain problem difficulty and
assumptions. The comparison of types of biases and types of cross-validation provides a useful
framework for decisions in these areas. The utilization of the value-focused thinking process is
an additional benefit that could provide analysts and decision makers a logical and speedy
process to combine subjective and objective measurements in deciding which path they may take
during a project.

Original Contributions

1. Developed a unique value hierarchy for comparison of different algorithms and carried
the analysis through the ten steps to provide an example of how this process can be applied to
technical decision making.

2. Provided a comparison of user complexity measures, systematic classification accuracy
measures, and algorithmic generalization error decomposition measures to synthesize an overall
value based on the inputs of both the decision maker and the performance of these algorithms
using parametric and non-parametric bootstrapped estimates.

3. Provided a comparison and analysis of jackknife and k-fold cross-validation
performance for training and testing an algorithm on basic two-distribution data sets.

4. Examined the differences between bias and variance estimates for different loss
functions, including a quadratic loss function decomposition and a zero-one loss function

decomposition and used both results to help inform a decision.
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Limitations

There are a few limitations in this research that simplify the problem from what you
would see in a real HSI data experiment. The data that was used for this research was a
rudimentary representation of true HSI data and each individual problem was not completely
representative of the complexities of true data. While the VFT hierarchy could remain in the
structure that is exhibited in this research, it could take a willing and talented analyst some time
and thought to reform each individual measurement for different algorithms and different types
of datasets with various levels of assumptions. The assumptions that were utilized in this
research would need to be manipulated and strengthened or loosened for other analytical efforts.

Additionally, within the process of collecting bias and variance estimates, samples were
deleted if they did not result in class distributions that had both target and background classes
apparent. This was a reflection of the difficulty and level of information contained in the
problem. In real empirical samples, this lack of well-shaped data may not be present, and other
ways of combating this problem may need to be developed. The formulation for the non-
parametric bootstrap was based on treating each unique x vector and corresponding class label as
one case and bootstrapping the individual cases. This may not be the optimal bootstrap
formulation for reducing the bias of these parameters.

One other issue is the development of the grid for the Domingos’ Error Decomposition
problem, which is optimized for a two-dimensional problem, would need to be adjusted for a
higher dimensional problem. One solution to this issue is to collect a fraction of the grid points

but in higher dimensionality, which would maintain the computational cost of the problem.
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Suggestions for Future Research

For future research, this methodology should be expanded to other sets of data and more
complex algorithms. Decisions would need to be made for which order feature extraction and
selection steps should be performed and which measures should be utilized. Any type of HSI
data could be used for the subject of evaluation for the hierarchy. The individual utility value
curves could be coded in a statistical software language to quickly assess the overall hierarchy
values for each image. This can be compared to the use of the medians for each different factor
level combination to see if these results remain the same.

One of the main advantages to the VFT methodology is the fact that it is flexible and
modular for different problems and different decision makers. New decision makers should be
surveyed to understand how the methodology would change for their inputs and the measures
would be updated accordingly. The three basic branches for analysis could remain the same as
they test the three most impactful measurements for the quality of the algorithms. More testing
and validation should be accomplished at each increase of problem complexity to ensure that the

weights used are still applicable.

Conclusions

This research was used as a way to fuse the quality assessment of many different images
together using a value-focused hierarchy to determine the best algorithm to use in a certain
situation. At times, a fusion of various different algorithms may provide better performance than
a single classifier. This type of work has been accomplished before, and this value hierarchy can
be modified to be used with different algorithms fused together. Additionally, the complexity of
the hierarchy can be increased and decreased with the advice of the analyst and the decision

makers in the process. Much like in previous research, different perspectives could change the
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values and measures that are utilized within the hierarchy. The fusion of these different opinions
could further strengthen the value of the output of these hierarchies. Additionally, different types
of loss function decompositions could be utilized and analyzed for each different type of
problem. Most of the measurements in this research were notional and chosen due to the
uniqueness and newness of the type of analysis. In the real world, uniqueness may not be as
critical of an objective and each analysis team must get together after careful deliberation to
decide upon the values and measures of interest. Although CART was seen as the optimum

algorithm for these test sets, it may not be the algorithm of choice for more complex problems.
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Appendix A. Value Functions for Measures

Ease of Use Categary Value

Difficult 0.10
100 Moderate 0.20
090 Reasonable 0.50
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g
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B Category 0.10 0.20 050 070 1.00

Figure 80. - Ease of Use Value Function
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Figure 81. - Computation Time Value Function
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Figure 82. - TPF Measure Value Function
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Figure 83. - FPF Measure Value Function
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Error Measure
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Figure 84. - Error Measure Value Function
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Figure 85. - Accuracy Measure Value Function
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Figure 86. - Sensitivity Measure Value Function
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Figure 87. - Specificity Measure Value Function
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K-Fold Cross Validation Error
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Figure 88. - K-fold Cross Validation Error Value Function
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Figure 89. - Jackknife Cross Validation Error Value Function
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Figure 90. - TPF Bias Value Function
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Appendix B. Bias and Variance Comparisons
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Appendix C. MATLAB Code

Main Data Compiler

%Initialize a data matrix for distances (y) and factors (x)
ParaMatrix=zeros(Comb,7);

DataMatrix=zeros(Comb*3,1600) ;

NBP=zeros(Comb,1);

BmuCel 1{Q}=cell(Comb,1);

TmuCel 1{Q}=cell(Comb,1);

BCMCel 1{Q}=cell(Comb,1);

TCMCel 1{Q}=cell(Comb,1);

rng("default®)
%Automatically generates both MVG distributions and mean to distribution
%Mana. dists for each possible factor combination (need to adjust for
%different cov mtx and mus)
for PQi=1:3
for TCi=1:3
for BCi=1:3
for Ti=1:3
for Bi=1:3

%Create initial feature Matrix (Ones of pix qty/tgt qty n for two cols)
Ftrs=ones(POm(PQi ,2)+PQm(PQi,3),2);

%Set the Background or Target class response - number - Bgnd/Tgt Pix Qty
%This is based on setting the class to background for 1 to Bgnd Qty and the
%rest to target class
BorT=cell (POm(PQi ,2)+PQm(PQi,3),1);
for i=1:(PQm(PQi,2)+PQm(PQi,3));
it i<PQm(PQ1,3)+1;
BorT{i,l1}="Background”;
else
BorT{i,1}="Target";
end
end

%This is the same as above but for 0 and 1 (numerical) classes for bgnd and
%tgt
BorT2=zeros(POm(PQi ,2)+POm(PQi,3),1);
for i=1:(PQm(PQi,2)+PQOm(PQi,3));
it i<PQm(PQ1,3)+1;
BorT2(i,1)=0;
else
BorT2(i,1)=1;
end
end

%Develop the distributions for bgrnd/tgt
BD = mvnrnd(Bmu(Bi,:),BCM(((2*BCi-1):2*BCi),:), POm(PQi,3));
TD = mvnrnd(Tmu(Ti, ), TCM(((2*TCi-1):2*TCi),:), POm(PQi,2));
%Calculate the mahalanobis distance from mean to distribution
TDBMmd= mahal (Bmu(Bi,:),TD);
BDTMmd= mahal (Tmu(Ti,:),BD);
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%Set the feature matrix to the distributions
Ftrs(1:POm(PQi,3),1:2)=BD;
Ftrs(POm(PQi,3)+1:end,1:2)=TD;

%Plug Distances, mean numbers, and cov mtx numbers into data matrix
ParaMatrix(Q,1)=TDBMmd;

ParaMatrix(Q,2)=BDTMmd;

ParaMatrix(Q,3)=Bi;

ParaMatrix(Q,4)=Ti;

ParaMatrix(Q,5)=BCi;

ParaMatrix(Q,6)=TCi;

ParaMatrix(Q,7)=PQm(PQi,1);

NBP(Q)=NP-NP*PQm(PQi,1);

%Create a matrix to hold all background/target distributions
DataMatrix(3*Q-2:3*Q-1,1:POm(PQi,3))= BD";
DataMatrix(3*Q-2:3*Q-1,PQm(PQi,3)+1:NP)= TD";
DataMatrix(3*Q, )= BorT2";

BmuCel 1{Q}=Bmu;
TmuCel 1{Q}=Tmu;
BCMCel 1{Q}=BCM;
TCMCel 1{Q}=TCM;

Q=Q+1;

end
end
end
end
end

Domingos’ Bias/Variance Calculations

%Sets up all of the blank cells
CMTXx=cel1(243,1);
CMTXy=cell1(243,1);
Bmu=cel1(243,1);
Tmu=cell1(243,1);
BCM=cel1(243,1);
TCM=cel1(243,1);
CARTrepData=cel1(243,50);
XxGrid=cell(243,1);
XGridData=zeros(1000,2);
CARTyData=cel1(243,50);
CARTyhatData=cell1(243,50);
CARTCounts=cel1(243,50);
tData=cel1(243,1000);

%Develops the grid for testing for Domingos®™ Bias and Variance
for i=1:Comb
CMTXx{1}=DataMatrix(3*i-2:3*i-1,:)";
CMTXy{i1}=DataMatrix(3*i,:)";
Bmu{i}=BmuCel 1{i};
Tmu{i}=TmuCell{i};
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BCM{i}=BCMCel 1{i};
TCM{i}=TCMCel1{i};
for j=1:1000;

xGridData(j, - )=[min(CMTXx{i1}(:,1))+(§/1000)*range (CMTXx{i}(:,1)), (max(CMTXx{i
3L 2))-min(CMTXX{i}(:,2))) - *randOQ+min(CMTXx{i}(:,2))]:
end
xGrid{i}=xGridData;
end

%Develops The parametric bootstrapping for the unique run
part=1;
for i=1:Comb

parfor j=1:50

CARTrepData{i,j} =
CARTFUncD(CMTXx{i},CMTXy{i},Bmu{i},BCM{i}, Tmuf{i}, TCM{i});
end
end

function [CARTrepData] = CARTFuncD(CMTXx,CMTXy,Bmu,BCM,Tmu, TCM)
CARTmodel = fitctree(CMTXx,CMTXy);

% Prune to a certain k, if there is not enough levels, don"t prune
if max(CARTmodel .PruneList)>5
CARTmodelP= prune(CARTmodel, "level " ,5);
else
CARTmode IP=CARTmodel ;

end
BDr = mvnrnd(Bmu,BCM,1200);
TDr = mvnrnd(Tmu,TCM,400);

test=[BDr;TDr];
CARTyfi1tRep=predict(CARTmodelP,test);
CARTrepData=[test,CARTyfitRep];

end
% Sets up the T and Y measurements
part=2;
for i=1:Comb
parfor j=1:50
[CARTtData{i,j},CARTyhatData{i,j},sizeT] =

CARTFuncY(CARTrepData{i,j}(:,1:2),CARTrepData{i,j}(:,3),xCrid{i})
sizeT

end
end

function [CARTtData,CARThatData, sizeT] = CARTFuncY(CmtxX,CmtxY,xgrid)

CMTXc=[CmtxX(:,1:2),CmtxY];
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BMEtX=CMTXc(Find(CMTXc(:,3)==0),1:2);

TMEX=CMTXc(Find(CMTXc(:,3)==1),1:2);
sizeT=size(TMtx,1)

if sizeT<2 || (rank(cov(BMtx))~=2 || rank(cov(TMtx))~=2)
CARTtData=[];
CARThatData=[];

else
CARTmodel = fitctree(CMTXc(:,1:2),CMTXc(:,3));

% Prune to a certain k, if there is not enough levels, don"t prune
if max(CARTmodel .PruneList)>5
CARTmodelP= prune(CARTmodel, "level " ,5);
else
CARTmode IP=CARTmodel ;
end

CARTtFitRep=predict(CARTmodelP,xgrid);
CARTtData=[xgrid,CARTtFitRep];

end

if sizeT<2 || (rank(cov(BMtx))~=2 || rank(cov(TMtx))~=2)
CARThatData=[];

else
BMtx2=CARTtData(find(CARTtData(:,3)==0),1:2);

TMtx2=CARTtData(Ffind(CARTtData(:,3)==1),1:2);
sizeT2=size(TMtx2,1)

if sizeT2<2 || (rank(cov(BMtx2))~=2 || rank(cov(TMtx2))~=2)
CARThatData=[];

else
CARTmodel2 = fitctree(xgrid,CARTtFitRep);

% Prune to a certain k, if there is not enough levels, don"t prune
if max(CARTmodel .PruneList)>5
CARThatmodel= prune(CARTmodel2, "level " ,5);
else
CARThatmode l=CARTmodel2;
end

CARThatFit=predict(CARThatmodel,xgrid);
CARThatData=[xgrid,CARThatfit];
end

end

end

%Error checking for Domingos and calculation of Bias and Variance
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[EmptySet, CARTtData2, EmptySet2, CARTyhatData2] =
MakeEmpty (CARTtData,CARTyhatData);

function [EmptySet, QDAtData2, EmptySet2, QDAyhatData?] =
MakeEmpty (QDAtData,QDAyhatData);

%Sets empty cells

QDAtData2=QDAtData;
EmptyCell=cellfun("isempty”,QDAtData2);
EmptyCell=EmptyCell(:,1);
Empties=zeros(243,2);
Empties(:,1)=EmptyCell;
Empties(:,2)=1:243;

QDAyhatData2=QDAyhatData;
EmptyCell2=cellfun("isempty”,QDAyhatData?2);
EmptyCel 12sum=sum(EmptyCell2,2);

Empties2=zeros(243,2);
Empties2(:,1)=EmptyCell2sum;
Empties2(:,2)=1:243;
EmptyCellTest=EmptyCel I2sum+EmptyCell;

%Finds the empty cells and removes them
EmptySet=Empties(find(Empties(:,1)==1),2)";

QDAtData2=QDAtData(find(EmptyCellTest(:,1)==0),:);
EmptySet2=Empties2(find(Empties2(:,1)>0),2)";
QDAyhatData2=QDAyhatData2 (find(EmptyCellTest(:,1)==0),:);
end

[Stackedt, yhatStacked, tsize] = Stacked(CARTtData2,CARTyhatData?);

function [Stackedt, yhatStacked, tsize] = Stacked(QDAtData2,QDAyhatData?2);

%Sets up new matrices

tsize=size(QDAtData2,1);
tNewData=cell (tsize,50);
Stackedt=cell(tsize,1);

yhatNewData=cel l (tsize,50);
yhatStacked=cell (tsize,1);

%Stacks up the t matrices and sets into Stackedt
for i=1l:tsize
for j=1:50
tNewData{i, j}=QDAtData2{i,j}";
Stackedt{i}(J,:)=tNewData{i,j}(3,:);
end
end
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%Does the same for the y matrices
for i2=1:tsize

1i=i2

for j2=1:50

yhatNewData{i2, j2}=QDAyhatData2{i2,j2}";
yhatStacked{i2}(j2, :)=yhatNewData{i2,j2}(3,:);
1i=j2
end

end

end

[DomData, DomAve] = DomingosBV(Stackedt, yhatStacked, tsize);

function [DomData, DomAve] = DomingosBV(Stackedt, yhatStacked, tsize);

%Finds the Mode of the t which is the optimum prediction
Modet=cell(tsize,l);
for i=1l:tsize

for j=1:1000
Modet{i,1}(1,j)=mode((Stackedt{i,1}(:,3))):
ii=i

1]
end
end

%Finds the mode of the y which is the main prediction
Modey=cell(tsize,l);
for i2=1:tsize
for j2=1:1000
Modey{i2,1}(1, j2)=mode((yhatStacked{i2,1}(:,j2)));
112=i2
132=j2
end
end

%Sets up the Bias, Variance, and Noise cells
BiasD=cell(tsize,l);
VarD=cell(tsize,l);
NoiseD=cell(tsize,1);
%Carries out the Domingos®™ calculations
for i3=1:tsize
for j3=1:1000
BiasD{i3,1}(1,j3)=abs(Modet{i13,1}(1,j3)-Modey{i3,1}(1,33));

VarD{i3,1}(1, j3)=mean(abs(Modey{i3,1}(1,j3)-
yhatStacked{i3,1}(:,J3)));

NoiseD{i13,1}(1,j3)=mean(abs(Stackedt{i3,1}(:,j3)-Modet{i3,1}(1,j3)));

153



end
end

%Calculates the Probopt to decide the cl and c2 variables and then
%calculates the total expected loss
gnum=cell(tsize,1l);
Probopt=cell(tsize,1);
cl=cell(tsize,l);
c2=cell(tsize,l);
ExpLoss=cell(tsize,l);
for i4=1:tsize
for j4=1:1000
gnum{i4,1}(1, j4)=sum(yhatStacked{i4,1}(:,j4)==Modet{i4,1}(1,j4));
Probopt{i4,1}(1,j4)=gnum{i4,1}(1,j4)/50;
cl{i4,1}(1,j4)=2*Probopt{i4,1}(1,j4)-1;
it Modey{i4,1}(1,j4)==Modet{i4,1}(1,j4);
c2{i4,1}(1,34)=1;
else
c2{i4,1}(1,j4)=-1;
end

ExpLoss{i4,1}(1,j4)=cl{i4,1}(1,j4)*NoiseD{i4,1}(1,j4)+BiasD{i4,1}(1,j4)--.
+c2{i4,1}(1,j34)*VarD{i4,1}(1,j4);

end

end
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Appendix D. Quad Chart
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